cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237928 Triangular array read by rows. T(n,k) is the number of n-permutations with k cycles of length one or k cycles of length two, n>=0,0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 18, 14, 9, 0, 1, 95, 75, 35, 10, 0, 1, 540, 369, 135, 55, 15, 0, 1, 3759, 2800, 1239, 420, 70, 21, 0, 1, 30310, 22980, 10570, 2884, 735, 112, 28, 0, 1, 272817, 202797, 87534, 24780, 6489, 1134, 168, 36, 0, 1
Offset: 0

Views

Author

Geoffrey Critzer, Feb 15 2014

Keywords

Examples

			1,
1,    1,
2,    1,    1,
3,    3,    0,    1,
18,   14,   9,    0,   1,
95,   75,   35,   10,  0,  1,
540,  369,  135,  55,  15, 0,  1,
3759, 2800, 1239, 420, 70, 21, 0, 1
T(3,0)=3 because we have: (1)(2)(3);(1,2,3);(2,1,3)
		

Programs

  • Mathematica
    nn=10;c=Sum[y^n x^(3n)/(2^n*n!^2),{n,0,nn}];Table[Take[(Range[0,nn]!CoefficientList[Series[Exp[y x]Exp[-x]/(1-x)+Exp[y x^2/2]Exp[-x^2/2]/(1-x)-c Exp[-x-x^2/2!]/(1-x),{x,0,nn}],{x,y}])[[n]],n],{n,1,nn}]//Grid

Formula

E.g.f.: A(x,y) + B(x,y) - C(x,y) where A(x,y) is e.g.f. for A008290, B(x,y) is e.g.f. for A114320, and C(x,y) = exp(-x - x^2/2)/(1-x)*Sum_{n>=0}y^n*x^(3n)/(2^n*n!^2).