A237928 Triangular array read by rows. T(n,k) is the number of n-permutations with k cycles of length one or k cycles of length two, n>=0,0<=k<=n.
1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 18, 14, 9, 0, 1, 95, 75, 35, 10, 0, 1, 540, 369, 135, 55, 15, 0, 1, 3759, 2800, 1239, 420, 70, 21, 0, 1, 30310, 22980, 10570, 2884, 735, 112, 28, 0, 1, 272817, 202797, 87534, 24780, 6489, 1134, 168, 36, 0, 1
Offset: 0
Examples
1, 1, 1, 2, 1, 1, 3, 3, 0, 1, 18, 14, 9, 0, 1, 95, 75, 35, 10, 0, 1, 540, 369, 135, 55, 15, 0, 1, 3759, 2800, 1239, 420, 70, 21, 0, 1 T(3,0)=3 because we have: (1)(2)(3);(1,2,3);(2,1,3)
Programs
-
Mathematica
nn=10;c=Sum[y^n x^(3n)/(2^n*n!^2),{n,0,nn}];Table[Take[(Range[0,nn]!CoefficientList[Series[Exp[y x]Exp[-x]/(1-x)+Exp[y x^2/2]Exp[-x^2/2]/(1-x)-c Exp[-x-x^2/2!]/(1-x),{x,0,nn}],{x,y}])[[n]],n],{n,1,nn}]//Grid