cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237976 Number of strict partitions of n such that (least part) < number of parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 3, 4, 6, 7, 9, 11, 14, 17, 21, 25, 31, 37, 45, 54, 64, 76, 90, 106, 124, 146, 170, 198, 230, 267, 308, 357, 410, 472, 542, 621, 709, 811, 923, 1051, 1194, 1355, 1534, 1738, 1962, 2215, 2497, 2812, 3161, 3553, 3986, 4469, 5005, 5600, 6258
Offset: 0

Views

Author

Clark Kimberling, Feb 18 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  71, 521, 431.
		

Crossrefs

Programs

  • Mathematica
    z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
    Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}]  (* A237976 *)
    Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
    Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
    Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}]  (* A237979 *)
    Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=0, N, x^(k*(k+1)/2)*(1-x^(k*(k-1)))/prod(j=1, k, 1-x^j)))) \\ Seiichi Manyama, Jan 13 2022

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)/2) * (1-x^(k*(k-1))) / Product_{j=1..k} (1-x^j). - Seiichi Manyama, Jan 13 2022
a(n) = A000009(n) - A025157(n). - Vaclav Kotesovec, Jan 18 2022

Extensions

Prepended a(0)=0, Seiichi Manyama, Jan 13 2022