A237998 Number of partitions of 2^n into parts that are at most n.
0, 1, 3, 10, 64, 831, 26207, 2239706, 567852809, 454241403975, 1192075219982204, 10510218491798860052, 315981966712495811700951, 32726459268483342710907384794, 11771239570056489326716955796095261, 14808470136486015545654676685321653888199
Offset: 0
Keywords
Examples
a(1) = 1: 11. a(2) = 3: 22, 211, 1111. a(3) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..62
- A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])
Programs
-
Mathematica
a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 03 2018 *)
Formula
a(n) = [x^(2^n)] Product_{j=1..n} 1/(1-x^j).
a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015