A238005 Number of partitions of n into distinct parts such that (greatest part) - (least part) = (number of parts).
0, 0, 0, 1, 0, 1, 1, 2, 0, 2, 2, 2, 2, 2, 1, 4, 3, 2, 3, 3, 2, 4, 4, 4, 3, 4, 2, 5, 5, 3, 5, 6, 3, 5, 3, 5, 6, 6, 4, 6, 6, 4, 6, 6, 3, 7, 7, 7, 6, 6, 5, 7, 7, 5, 6, 8, 6, 8, 8, 6, 8, 8, 4, 9, 6, 7, 9, 9, 7, 7, 9, 8, 9, 9, 5, 9, 7, 8, 10, 10
Offset: 1
Examples
a(8) = 2 counts these partitions: 53, 431.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..20000
- N. J. A. Sloane, Proof of Theorem A in A238005
Crossrefs
a(n) is also the number of zeros in the n-th row of the triangles A196020, A211343, A231345, A236106, A237048 (simpler), A239662, A261699, A271344, A272026, A280850, A285574, A285891, A285914, A286013, A296508 (and possibly others). Omar E. Pol, Feb 17 2018
Row sums of A347579. - Omar E. Pol, Sep 07 2021
Programs
-
Mathematica
z = 70; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A001227 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A003056 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A238005 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A238006 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A238007 *) {0}~Join~Array[Floor[(Sqrt[1 + 8 #] - 1)/2] - DivisorSum[#, 1 &, OddQ] &, 102] (* Michael De Vlieger, Feb 18 2018 *)
-
PARI
a(n) = if (n, (sqrtint(8*n+1)-1)\2 - sumdiv(n, d, d%2), 0); \\ Michel Marcus, Mar 01 2018
Formula
G.f. = (x/(1-x)) * Sum_{k >= 1} x^(k*(k+1)/2) * (1 - x^(k-1)) / (1 - x^k). This follows from Theorem A and the g.f.s for A003056 and A001227. - William J. Keith, Sep 05 2021
Extensions
Edited by N. J. A. Sloane, Sep 11 2021, mostly to add Theorem A.
Comments