cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238020 Number of nonconsecutive chess tableaux with n cells.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 5, 10, 15, 33, 52, 126, 213, 537, 991, 2563, 5118, 13670, 29171, 81069, 180813, 525755, 1216996, 3693934, 8843831, 27797975, 69106326, 223116931, 577433770, 1903516721, 5136516772, 17257698892, 48388514996, 166022450140, 481137194184
Offset: 0

Views

Author

Alois P. Heinz, Feb 17 2014

Keywords

Comments

A standard Young tableau (SYT) with cell(i,j)+i+j == 1 mod 2 for all cells where entries m and m+1 never appear in the same row is called a nonconsecutive chess tableau.

Examples

			a(6) = 4:
[1]   [1 6]   [1 4]   [1 4]
[2]   [2]     [2 5]   [2 5]
[3]   [3]     [3]     [3 6]
[4]   [4]     [6]
[5]   [5]
[6]
		

Crossrefs

Programs

  • Maple
    b:= proc(l, t) option remember; local n, s;
          n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and
          irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop(
          i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n))
        end:
    g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0), `if`(i<1, 0,
                     add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> g(n, n, []):
    seq(a(n), n=0..32);
  • Mathematica
    b[l_, t_] := b[l, t] = Module[{ n = Length[l], s = Total[l]}, If[s == 0, 1, Sum[If[t != i && Mod[s + i - l[[i]], 2] == 1 && l[[i]] > If[i == n, 0, l[[i + 1]]], b[ReplacePart[l, i -> If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]], i], 0], {i, 1, n}]]];
    g[n_, i_, l_] := If[n == 0 || i == 1, b[Join[l, Table[1, n]], 0], If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Table[i, j]]], {j, 0, n/i}]]];
    a[n_] := g[n, n, {}];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Nov 08 2017, after Alois P. Heinz *)