A238057 Primes which are the concatenation of two primes in exactly two ways.
313, 317, 373, 797, 1373, 1913, 1973, 1997, 2113, 2293, 2311, 2347, 2383, 2389, 2953, 2971, 3167, 3313, 3373, 3593, 3673, 3677, 3719, 3733, 3761, 4337, 4397, 5233, 5347, 5953, 6173, 6197, 6737, 7193, 7331, 7433, 7577, 7877, 7919, 7937, 10313, 10337, 10937
Offset: 1
Examples
313 is in the sequence because 31 and 3 are both primes, and 3 and 13 are both primes, so there are two ways.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a238057 n = a238057_list !! (n-1) a238057_list = filter ((== 2) . length . f) a000040_list where f x = filter (\(us, vs) -> head vs /= '0' && a010051' (read us :: Integer) == 1 && a010051' (read vs :: Integer) == 1) $ map (flip splitAt $ show x) [1 .. length (show x) - 1] -- Reinhard Zumkeller, Feb 27 2014
-
Mathematica
spl[n_] := Block[{d = IntegerDigits@n, c = 0, z}, z = Length@d; Do[ If[ PrimeQ@ FromDigits@ Take[d, k] && d[[k + 1]] > 0 && PrimeQ@ FromDigits@ Take[d, k - z], c++], {k, z - 1}]; c]; Select[ Prime@ Range@1400, spl[#] == 2 &] (* Giovanni Resta, Feb 27 2014 *)