A238056 Primes which are the concatenation of two primes in exactly one way.
23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 229, 233, 241, 271, 283, 293, 311, 331, 337, 347, 353, 359, 367, 379, 383, 389, 397, 433, 523, 541, 547, 571, 593, 613, 617, 673, 677, 719, 733, 743, 761, 773, 977, 1013, 1033, 1093, 1097, 1117, 1123, 1129
Offset: 1
Examples
113 is in the sequence because 11 and 3 are both primes, but 1 and 13 are not both primes, so there is one way.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..5000
Programs
-
Haskell
a238056 n = a238056_list !! (n-1) a238056_list = filter ((== 1) . length . f) a000040_list where f x = filter (\(us, vs) -> head vs /= '0' && a010051' (read us :: Integer) == 1 && a010051' (read vs :: Integer) == 1) $ map (flip splitAt $ show x) [1 .. length (show x) - 1] -- Reinhard Zumkeller, Feb 27 2014
-
Mathematica
spl[n_] := Block[{d = IntegerDigits@n, c = 0, z}, z = Length@d; Do[If[PrimeQ@ FromDigits@ Take[d, k] && d[[k + 1]] > 0 && PrimeQ@ FromDigits@ Take[d, k - z], c++], {k, z - 1}]; c]; Select[ Prime@ Range@ 300, spl[#] == 1 &] (* Giovanni Resta, Feb 27 2014 *)
Comments