A238098 Number of cubic polynomials with coefficients from {1..n} for which all three roots are integers.
0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 15, 19, 21, 23, 25, 27, 30, 34, 36, 39, 44, 46, 49, 54, 57, 60, 64, 67, 72, 76, 79, 85, 91, 92, 95, 100, 106, 109, 115, 117, 122, 129, 132, 136, 147, 150, 154, 159, 163, 166, 174, 180, 187, 191, 194, 199, 210, 211, 216
Offset: 1
Keywords
Links
- Dorin Andrica and Eugen J. Ionascu, On the number of polynomials with coefficients in [n], An. St. Univ. Ovidius Constanta, Vol. 22(1),2014, 13-23.
Programs
-
PARI
f(n) = if( n<1, 0, sum(a1=1, n, sum(a2=1, n, sum(a3=1, n, vecmax([a1, a2, a3]) == n && vecsum( factor( Pol([1, a1, a2, a3]))[, 2]) == 3)))); \\ A238097 a(n) = sum(k=1, n, (n\k)*f(k)); lista(nn) = my(v = vector(nn, k, f(k))); vector(nn, i, sum(k=1, i, (i\k)*v[k])); \\ Michel Marcus, Sep 28 2023
Formula
a(n) = Sum_{k=1..n} floor(n/k)*A238097(k).
Comments