cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238097 Number of monic cubic polynomials with coefficients from {1..n} and maximum coefficient equal to n, for which all three roots are integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 3, 2, 1, 2, 3, 1, 3, 0, 3, 3, 1, 1, 4, 3, 1, 1, 3, 2, 3, 1, 2, 3, 2, 0, 4, 5, 2, 2, 2, 1, 3, 3, 3, 3, 1, 0, 5, 4, 1, 2, 4, 4, 3, 1, 2, 2, 3, 1, 5, 6, 1, 2, 3, 2, 3, 1, 4, 6, 2, 0, 5, 5, 1, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Feb 22 2014

Keywords

Examples

			a(11) = 2 with polynomials x^3 + 6*x^2 + 11*x + 6 = (x+1) * (x+2) * (x+3) and x^3 + 7*x^2 + 11*x + 5 = (x+1)^2 * (x+5). - _Michael Somos_, Feb 23 2014
		

Crossrefs

Programs

  • Mathematica
    Table[p = Flatten[Table[{a, b, c, 1}, {a, n}, {b, n}, {c, n}], 2]; cnt = 0; Do[If[Max[p[[i]]] == n, poly = p[[i]].x^Range[0, 3]; r = Rest[FactorList[poly]]; If[Total[Transpose[r][[2]]] == 3 && Union[Coefficient[Transpose[r][[1]], x]] == {1}, Print[{n, r}]; cnt++]], {i, Length[p]}]; cnt, {n, 20}] (* T. D. Noe, Feb 22 2014 *)
  • PARI
    {a(n) = if( n<1, 0, sum(a1=1, n, sum(a2=1, n, sum(a3=1, n, vecmax([a1, a2, a3]) == n && vecsum( factor( Pol([1, a1, a2, a3]))[, 2]) == 3))))}; /* Michael Somos, Feb 23 2014 */

Extensions

Definition corrected by Giovanni Resta, Feb 22 2014
Extended by T. D. Noe, Feb 22 2014

A238096 a(n) = Sum_{k=2..n} floor(n/k)*floor((tau(k)+1)/2), where tau = A000005.

Original entry on oeis.org

0, 1, 2, 5, 6, 10, 11, 16, 19, 23, 24, 33, 34, 38, 42, 50, 51, 60, 61, 70, 74, 78, 79, 94, 97, 101, 106, 115, 116, 129, 130, 141, 145, 149, 153, 172, 173, 177, 181, 196, 197, 210, 211, 220, 229, 233, 234, 257, 260, 269, 273, 282, 283, 298, 302, 317, 321, 325, 326, 353, 354, 358, 367, 382, 386, 399, 400, 409, 413, 426
Offset: 1

Views

Author

N. J. A. Sloane, Feb 22 2014

Keywords

Comments

Number of quadratic polynomials with coefficients from {1..n} for which both roots are integers.
A generalization of A006318.

Crossrefs

Formula

G.f.: Sum_{k>=2} Sum_{d|k} x^(k^2/d)/((1 - x^k)*(1 - x)). - Miles Wilson, Jun 12 2025
Showing 1-2 of 2 results.