cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238108 a(n) = (n - 1)*(n - 2)*(5*n^4 + 3*n^3 + 34*n^2 - 264*n + 180)/360.

Original entry on oeis.org

1, 0, 0, 1, 19, 107, 386, 1086, 2597, 5530, 10788, 19647, 33847, 55693, 88166, 135044, 201033, 291908, 414664, 577677, 790875, 1065919, 1416394, 1858010, 2408813, 3089406, 3923180, 4936555, 6159231, 7624449, 9369262
Offset: 0

Views

Author

N. J. A. Sloane, Mar 01 2014

Keywords

Comments

n!*a(n) = number of self-avoiding paths in n-cube from 00...0 to 11...1 with two back-steps.

Crossrefs

Programs

  • Mathematica
    Table[(n-1)(n-2)(5n^4+3n^3+34n^2-264n+180)/360,{n,0,40}] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,0,0,1,19,107,386},40] (* Harvey P. Dale, Mar 15 2015 *)

Formula

a(0)=1, a(1)=0, a(2)=0, a(3)=1, a(4)=19, a(5)=107, a(6)=386, a(n)= 7*a(n-1)- 21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Harvey P. Dale, Mar 15 2015
G.f.: ( -1+34*x^3-47*x^4+26*x^5-8*x^6+7*x-21*x^2 ) / (x-1)^7 . - R. J. Mathar, Apr 23 2015