cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238123 Triangle read by rows: T(n,k) gives the number of ballot sequences of length n having k largest parts, n >= k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 7, 2, 0, 1, 0, 20, 5, 0, 0, 1, 0, 56, 14, 5, 0, 0, 1, 0, 182, 35, 14, 0, 0, 0, 1, 0, 589, 132, 28, 14, 0, 0, 0, 1, 0, 2088, 399, 90, 42, 0, 0, 0, 0, 1, 0, 7522, 1556, 285, 90, 42, 0, 0, 0, 0, 1, 0, 28820, 5346, 1232, 165, 132, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 21 2014

Keywords

Comments

Also number of standard Young tableaux with last row of length k.

Examples

			Triangle starts:
00: 1;
01: 0,      1;
02: 0,      1,     1;
03, 0,      3,     0,     1;
04: 0,      7,     2,     0,    1;
05: 0,     20,     5,     0,    0,   1;
06: 0,     56,    14,     5,    0,   0,   1;
07: 0,    182,    35,    14,    0,   0,   0, 1;
08: 0,    589,   132,    28,   14,   0,   0, 0, 1;
09: 0,   2088,   399,    90,   42,   0,   0, 0, 0, 1;
10: 0,   7522,  1556,   285,   90,  42,   0, 0, 0, 0, 1;
11: 0,  28820,  5346,  1232,  165, 132,   0, 0, 0, 0, 0, 1;
12: 0, 113092, 21515,  4378,  737, 297, 132, 0, 0, 0, 0, 0, 1;
13: 0, 464477, 82940, 17082, 3003, 572, 429, 0, 0, 0, 0, 0, 0, 1;
...
The T(6,2)=14 ballot sequences of length 6 with 2 maximal elements are (dots for zeros):
01:  [ . . . . 1 1 ]
02:  [ . . . 1 . 1 ]
03:  [ . . . 1 1 . ]
04:  [ . . 1 . . 1 ]
05:  [ . . 1 . 1 . ]
06:  [ . . 1 1 . . ]
07:  [ . . 1 1 2 2 ]
08:  [ . . 1 2 1 2 ]
09:  [ . 1 . . . 1 ]
10:  [ . 1 . . 1 . ]
11:  [ . 1 . 1 . . ]
12:  [ . 1 . 1 2 2 ]
13:  [ . 1 . 2 1 2 ]
14:  [ . 1 2 . 1 2 ]
The T(8,4)=14 such ballot sequences of length 8 and 4 maximal elements are:
01:  [ . . . . 1 1 1 1 ]
02:  [ . . . 1 . 1 1 1 ]
03:  [ . . . 1 1 . 1 1 ]
04:  [ . . . 1 1 1 . 1 ]
05:  [ . . 1 . . 1 1 1 ]
06:  [ . . 1 . 1 . 1 1 ]
07:  [ . . 1 . 1 1 . 1 ]
08:  [ . . 1 1 . . 1 1 ]
09:  [ . . 1 1 . 1 . 1 ]
10:  [ . 1 . . . 1 1 1 ]
11:  [ . 1 . . 1 . 1 1 ]
12:  [ . 1 . . 1 1 . 1 ]
13:  [ . 1 . 1 . . 1 1 ]
14:  [ . 1 . 1 . 1 . 1 ]
These are the (reversed) Dyck words of semi-length 4.
		

Crossrefs

The terms T(2*n,n) are the Catalan numbers (A000108).
Row sums give A000085.
Cf. A026794.

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n<1, x^l[-1],
          b(n-1, [l[], 1]) +add(`if`(i=1 or l[i-1]>l[i],
          b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l)))
        end:
    T:= n->`if`(n=0, 1, (p->seq(coeff(p, x, i), i=0..n))(b(n-1, [1]))):
    seq(T(n), n=0..12);
    # second Maple program (counting SYT):
    h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
           add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, l) `if`(n=0 or i=1, h([l[], 1$n])*x^`if`(n>0, 1,
           `if`(l=[], 0, l[-1])), g(n, i-1, l)+
           `if`(i>n, 0, g(n-i, i, [l[], i])))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(g(n, n, [])):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_, l_List] :=  b[n, l] = If[n<1, x^l[[-1]], b[n-1, Append[l, 1]] +  Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; T[n_] := If[n == 0, 1, Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n-1, {1}]]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 07 2015, translated from Maple *)
  • PARI
    (A238123(n,k)=if(k, vecsum(apply(p->n!/Hook(Vecrev(p)), select(p->p[1]==k,partitions(n,[k,n])))), !n)); Hook(P,h=vector(P[1]),L=P[#P])={prod(i=1, L, h[i]=L-i+1)*prod(i=1,#P-1, my(D=-L+L=P[#P-i]); prod(k=0,L-1,h[L-k]+=min(k,D)+1))} \\  M. F. Hasler, Jun 03 2018