cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238132 Number of parts in all partitions of n into even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 134, 162, 190, 228, 270, 322, 380, 446, 524, 616, 720, 838, 980, 1134, 1314, 1526, 1760, 2026, 2336, 2676, 3072, 3518, 4020, 4586, 5232, 5948, 6760, 7676, 8698, 9846, 11142, 12578
Offset: 0

Views

Author

Mircea Merca, Feb 18 2014

Keywords

Examples

			a(8)=6 because the partitions of 8 into even number of distinct parts are: 7+1, 6+2 and 5+3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, (p->
          [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[3]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 27 2015
  • Mathematica
    max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] - (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)

Formula

a(n)=(1/2)*A015723(n)-(1/2)*sum{k=0..A235963(n)-1, (-1)^A110654(k)*A000005(n-A001318(k))}=A015723(n)-A238131(n).
G.f.: (1/2)*prod(k>=1, 1+x^k ) * sum(k>=1, x^k/(1+x^k) ) - (1/2)*prod(k>=1, 1-x^k) * sum(k>=1, x^k/(1-x^k) ).
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 27 2018