A238132 Number of parts in all partitions of n into even number of distinct parts.
0, 0, 0, 2, 2, 4, 4, 6, 6, 8, 12, 14, 18, 24, 32, 38, 50, 60, 76, 90, 110, 134, 162, 190, 228, 270, 322, 380, 446, 524, 616, 720, 838, 980, 1134, 1314, 1526, 1760, 2026, 2336, 2676, 3072, 3518, 4020, 4586, 5232, 5948, 6760, 7676, 8698, 9846, 11142, 12578
Offset: 0
Keywords
Examples
a(8)=6 because the partitions of 8 into even number of distinct parts are: 7+1, 6+2 and 5+3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, function s_e(n).
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, (p-> [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1))))) end: a:= n-> b(n$2)[3]: seq(a(n), n=0..60); # Alois P. Heinz, Dec 27 2015 -
Mathematica
max = 50; s = (1/2)*Product[1+x^k, {k, 1, max}]*Sum[x^k/(1+x^k), {k, 1, max}] - (1/2)*Product[1-x^k, {k, 1, max}]*Sum[x^k/(1-x^k), {k, 1, max}] + O[x]^(max+1); CoefficientList[s, x] (* Jean-François Alcover, Dec 27 2015 *)
Formula
a(n)=(1/2)*A015723(n)-(1/2)*sum{k=0..A235963(n)-1, (-1)^A110654(k)*A000005(n-A001318(k))}=A015723(n)-A238131(n).
G.f.: (1/2)*prod(k>=1, 1+x^k ) * sum(k>=1, x^k/(1+x^k) ) - (1/2)*prod(k>=1, 1-x^k) * sum(k>=1, x^k/(1-x^k) ).
G.f.: -(2 * (x; x)inf * (log(1-x) + psi_x(1)) + (-1; x)_inf * (log(1-x) + psi_x(1-log(-1)/log(x))))/(4*log(x)), where psi_q(z) is the q-digamma function, (a; q)_inf is the q-Pochhammer symbol, log(-1) = i*Pi. - _Vladimir Reshetnikov, Nov 21 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (4*Pi*n^(1/4)). - Vaclav Kotesovec, May 27 2018