A238133 Difference between A238131(n) and A238132(n).
0, 1, 1, -1, -1, -3, 0, -2, 1, 2, 1, 2, 4, 1, -1, 4, -2, -1, -3, -1, -2, -2, -6, 0, -1, 1, -4, 0, 3, 2, 2, 2, 3, 0, 4, 7, 0, 0, 2, -3, 7, -2, -1, -3, -2, -4, 0, -3, -3, -2, -1, -10, -1, 0, 1, -1, 0, -6, 2, 2, 0, 4, 3, 4, 0, 2, 4, 3, 0, 5, 8, 2, 0, 1, -1, 1, -3
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Mircea Merca, A new look on the generating function for the number of divisors, Journal of Number Theory, Volume 149, April 2015, Pages 57-69.
- Mircea Merca, Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer, Journal of Number Theory, Volume 160, March 2016, Pages 60-75, difference s_o(n)-s_e(n).
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
Programs
-
Maple
A238133 := proc(n) add( numtheory[tau](k)*A010815(n-k),k=0..n) ; end proc: # R. J. Mathar, Jun 18 2016 # second Maple program: b:= proc(n, i) option remember; `if`(i*(i+1)/2
n, 0, (p-> [p[2], p[1], p[4]+p[2], p[3]+p[1]])(b(n-i, i-1))))) end: a:= n-> (p-> p[4]-p[3])(b(n$2)): seq(a(n), n=0..100); # Alois P. Heinz, Jun 18 2016 -
Mathematica
Table[SeriesCoefficient[QPochhammer[x] (Log[1 - x] + QPolyGamma[1, x])/Log[x], {x, 0, n}], {n, 0, 80}] (* Vladimir Reshetnikov, Nov 20 2016 *)
Comments