cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238136 Primes p such that p^4-p^3+1 and p^4-p^3-1 are also primes.

Original entry on oeis.org

1429, 5827, 7411, 9601, 12601, 18457, 20011, 20521, 24919, 25999, 28591, 29947, 33211, 33349, 36037, 38149, 41227, 42649, 43579, 45307, 46099, 49999, 52057, 52387, 54319, 59107, 59197, 59629, 67891, 70951, 73477, 74761, 75037, 81157, 92041, 93607, 114889
Offset: 1

Views

Author

K. D. Bajpai, Feb 18 2014

Keywords

Examples

			1429 is in the sequence because 1429, (1429^4-1429^3+1) and (1429^4-1429^3-1) are all primes.
		

Crossrefs

Programs

  • Maple
    KD := proc() local a, b,d; a:=ithprime(n); b:= a^4-a^3+1;d:=a^4-a^3-1; if isprime (b) and isprime(d) then RETURN (a); fi; end: seq(KD(), n=1..20000);
  • Mathematica
    Select[Prime[Range[3000]],PrimeQ[#^4-#^3+1]&&PrimeQ[#^4-#^3-1]&]
    c=0;a=2;Do[k=Prime[n];  If[PrimeQ[k^4-k^3+1] &&PrimeQ[k^4-k^3-1], c=c+1;  Print[c," ",k]],  {n,1,2000000}];
    pQ[n_]:=Module[{c=n^4-n^3},AllTrue[c+{1,-1},PrimeQ]]; Select[Prime[ Range[ 11000]],pQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 19 2014 *)
  • PARI
    s=[]; forprime(p=2, 120000, if(isprime(p^4-p^3+1) && isprime(p^4-p^3-1), s=concat(s, p))); s \\ Colin Barker, Feb 18 2014