A238147 The number of P-positions in the game of Nim with up to five piles, allowing for piles of zero, such that the total number of objects in all piles doesn't exceed 2n.
1, 11, 26, 126, 191, 341, 516, 1516, 2081, 2731, 3206, 4706, 5631, 7381, 9256, 19256, 24821, 30471, 33946, 40446, 44171, 48921, 52796, 67796, 76221, 85471, 91846, 109346, 119971, 138721, 158096, 258096, 313661, 369311
Offset: 0
Keywords
Examples
There is 1 position (0,0,0,0,0) with a total of zero. There are 10 positions with a total of 2 that are permutations of (0,0,0,1,1). Therefore, a(1)=11.
Links
- T. Khovanova and J. Xiong, Nim Fractals, arXiv:1405.594291 [math.CO] (2014), p. 18 and J. Int. Seq. 17 (2014) # 14.7.8.
Programs
-
Mathematica
Table[Length[ Select[Flatten[ Table[{n, k, j, i, BitXor[n, k, j, i]}, {n, 0, a}, {k, 0, a}, {j, 0, a}, {i, 0, a}], 3], #[[5]] <= a &]], {a, 0, 35}] (* Second program: *) a[n_] := a[n] = Which[n <= 1, {1, 11}[[n+1]], OddQ[n], 11 a[(n-1)/2] + 5 a[(n-1)/2 - 1], EvenQ[n], a[(n-2)/2 + 1] + 15*a[(n-2)/2]]; Array[a, 34, 0] (* Jean-François Alcover, Dec 14 2018 *)
Formula
a(2n+1) = 11a(n) + 5a(n-1), a(2n+2) = a(n+1) + 15a(n).
Comments