A238184 Sum of the squares of numbers of nonconsecutive chess tableaux over all partitions of n.
1, 1, 1, 1, 2, 2, 4, 7, 16, 37, 107, 282, 1020, 2879, 12507, 39347, 179231, 687974, 3225246, 14955561, 75999551, 392585613, 2271201137, 12183159188, 81562521256, 446611878413, 3336304592155, 19202329389234, 152803821604669, 958953289839930, 7835058287650579
Offset: 0
Keywords
Examples
a(7) = 1 + 2^2 + 1 + 1 = 7: . : [1111111] : [22111] : [3211] : [322] : <- shapes :-----------+--------------+---------+---------: : [1] : [1 6] [1 4] : [1 4 7] : [1 4 7] : : [2] : [2 7] [2 5] : [2 5] : [2 5] : : [3] : [3] [3] : [3] : [3 6] : : [4] : [4] [6] : [6] : : : [5] : [5] [7] : : : : [6] : : : : : [7] : : : :
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
- T. Y. Chow, H. Eriksson and C. K. Fan, Chess tableaux, Elect. J. Combin., 11 (2) (2005), #A3.
- Jonas Sjöstrand, On the sign-imbalance of partition shapes, arXiv:math/0309231v3 [math.CO], 2005.
- Wikipedia, Young tableau
Programs
-
Maple
b:= proc(l, t) option remember; local n, s; n, s:= nops(l), add(i, i=l); `if`(s=0, 1, add(`if`(t<>i and irem(s+i-l[i], 2)=1 and l[i]>`if`(i=n, 0, l[i+1]), b(subsop( i=`if`(i=n and l[n]=1, [][], l[i]-1), l), i), 0), i=1..n)) end: g:= (n, i, l)-> `if`(n=0 or i=1, b([l[], 1$n], 0)^2, `if`(i<1, 0, add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))): a:= n-> g(n, n, []): seq(a(n), n=0..32);
-
Mathematica
b[l_, t_] := b[l, t] = Module[{n, s}, {n, s} = {Length[l], Total[l]}; If[s == 0, 1, Sum[If[t != i && Mod[s+i-l[[i]], 2] == 1 && l[[i]] > If[i==n, 0, l[[i+1]]], b[ReplacePart[l, i -> If[i==n && l[[n]]==1, Nothing, l[[i]]-1]], i], 0], {i, 1, n}]]]; g[n_, i_, l_] := g[n, i, l] = If[n==0 || i==1, b[Join[l, Array[1&, n]], 0]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := g[n, n, {}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Feb 17 2017, translated from Maple *)
Formula
a(n) = Sum_{lambda : partitions(n)} ncc(lambda)^2, where ncc(k) is the number of nonconsecutive chess tableaux of shape k.
Comments