cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238219 The total number of 4's in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 13, 16, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 94, 108, 124, 142, 161, 185, 210, 238, 270, 307, 347, 392, 442, 499, 562, 632, 709, 797, 894, 1000, 1119, 1252, 1398, 1560, 1739, 1937, 2157
Offset: 0

Views

Author

Mircea Merca, Feb 20 2014

Keywords

Comments

The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

Examples

			a(13) = 3 because the partitions in question are: 9+4, 6+4+2+1, 5+4+3+1.
		

Crossrefs

Column k=4 of A238451.

Programs

  • Mathematica
    nmax = 100; With[{k=4}, CoefficientList[Series[x^k/(1+x^k)/2 * Product[1 + x^j, {j, 1, nmax}] - x^k/(1-x^k)/2 * Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 05 2025 *)

Formula

a(n) = Sum_{j=1..round(n/8)} A067659(n-(2*j-1)*4) - Sum_{j=1..floor(n/8)} A067661(n-8*j).
G.f.: (1/2)*(x^4/(1+x^4))*(Product_{n>=1} 1 + x^n) - (1/2)*(x^4/(1-x^4))*(Product_{n>=1} 1 - x^n).
a(n) ~ exp(Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jul 05 2025

Extensions

Terms a(51) and beyond from Andrew Howroyd, Apr 29 2020