A238222 Numbers m with property that m^2 + (m+1)^2 and (m+1)^2 + (m+2)^2 are prime.
1, 4, 24, 29, 34, 69, 84, 99, 109, 224, 229, 259, 284, 289, 319, 389, 409, 474, 489, 494, 514, 589, 679, 694, 709, 749, 759, 844, 949, 1079, 1099, 1134, 1174, 1189, 1194, 1269, 1294, 1304, 1329, 1364, 1409, 1474, 1714, 1749, 1784, 1844, 1854, 1924, 2014, 2059, 2099, 2149
Offset: 1
Keywords
Examples
1 is in the sequence because 1^2+2^2 = 5 and 2^2+3^2 = 13 are both prime. 4 is in the sequence because 4^2+5^2 = 41 and 5^2+6^2 = 61 are both prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..2000
Programs
-
Mathematica
Reap[Do[If[PrimeQ[k^2+(k+1)^2]&&PrimeQ[(k+1)^2+(k+2)^2],Sow[k]],{k,2000}]][[2,1]] Select[Range[2500],AllTrue[{#^2+(#+1)^2,(#+1)^2+(#+2)^2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 25 2017 *)
-
PARI
s=[]; for(m=1, 2500, if(isprime(m^2+(m+1)^2) && isprime((m+1)^2+(m+2)^2), s=concat(s, m))); s \\ Colin Barker, Feb 21 2014
Comments