A238275 a(n) = (4*7^n - 1)/3.
1, 9, 65, 457, 3201, 22409, 156865, 1098057, 7686401, 53804809, 376633665, 2636435657, 18455049601, 129185347209, 904297430465, 6330082013257, 44310574092801, 310174018649609, 2171218130547265, 15198526913830857, 106389688396816001, 744727818777712009
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 7 + 1 = 9; a(2) = 1 + 7 + 49 + 7 + 1 = 65; a(3) = 1 + 7 + 49 + 343 + 49 + 7 + 1 = 457; etc.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. Q. Baig, M. Imran, W. Khalid, and M. Naeem, Molecular description of carbon graphite and crystal cubic carbon structures, Canadian J. Chem., 95, 674-686, 2017.
- W. Gao, M. K. Siddiqui, M. Naeem and N. A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures, Molecules, 22, 1496, 1-12, 2017.
- Index entries for linear recurrences with constant coefficients, signature (8,-7).
Crossrefs
Programs
-
Magma
[(4*7^n - 1)/3: n in [0..30]]; // Vincenzo Librandi, Feb 23 2014
-
Mathematica
Table[(4 7^n - 1)/3, {n, 0, 40}] (* Vincenzo Librandi, Feb 23 2014 *)
Formula
G.f.: (1+x)/((1-x)*(1-7*x)).
a(n) = 7*a(n-1) + 2, a(0) = 1.
a(n) = 8*a(n-1) - 7*a(n-2), a(0) = 1, a(1) = 9.
a(n) = Sum_{k=0..n} A112468(n,k)*8^k.
E.g.f.: exp(x)*(4*exp(6*x) - 1)/3. - Stefano Spezia, Feb 12 2025
Comments