A237981
Array: row n gives the NW partitions of n; see Comments.
Original entry on oeis.org
1, 2, 3, 4, 3, 1, 5, 4, 1, 6, 5, 1, 4, 2, 7, 6, 1, 5, 2, 8, 7, 1, 6, 2, 5, 3, 9, 8, 1, 7, 2, 6, 3, 5, 3, 1, 10, 9, 1, 8, 2, 7, 3, 6, 4, 6, 3, 1, 11, 10, 1, 9, 2, 8, 3, 7, 4, 7, 3, 1, 6, 4, 1, 12, 11, 1, 10, 2, 9, 3, 8, 4, 8, 3, 1, 7, 5, 7, 4, 1, 6, 4, 2, 13
Offset: 1
Example 1. Let p = {6,3,3,3,1), a partition of 16. Then NW(p) = [10, 4, 2], NE(p) = [6,3,3,3,1], SE(p) = [5, 4, 3, 2, 1, 1], SW(p) = [5,4,4,1,1,1].
...
Example 2.
The first 9 rows of the array of NW partitions:
1
2
3
4 .. 3 .. 1
5 .. 4 .. 1
6 .. 5 .. 1 .. 4 .. 2
7 .. 6 .. 1 .. 5 .. 2
8 .. 7 .. 1 .. 6 .. 2 .. 5 .. 3
9 .. 8 .. 1 .. 7 .. 2 .. 6 .. 3 .. 5 .. 3 .. 1
Row 9, for example, represents the 5 NW partitions of 9 as follows: [9], [8,1], [7,2], [6,3], [5,3,1], listed in "Mathematica order".
-
z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} =
{Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=
Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
(* Peter J. C. Moses, Feb 25 2014 *)
A238325
Array: row n gives the number of occurrences of each possible antidiagonal partition of n, arranged in reverse-Mathematica order.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 4, 3, 4, 2, 2, 4, 6, 2, 6, 2, 2, 4, 4, 2, 3, 9, 4, 2, 2, 4, 4, 2, 6, 6, 3, 12, 1, 2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5, 2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10, 2, 2, 4, 4, 2, 4, 6, 4, 4, 6, 3, 6, 12, 2, 6
Offset: 1
The Mathematica ordering of the 6 antidiagonal partitions of 8 follows: 3221, 32111, 22211, 221111, 2111111, 11111111. Frequencies of these among the 22 partitions of 8 are given in reverse Mathematica ordering as follows: 11111111 occurs 2 times, 2111111 occurs 2 times, 221111 occurs 4 times, 22211 occurs 6 times, 32111 occurs 2 times, and 3221 occurs 6 times, so that row 8 of the array is 2 2 4 6 2 6.
...
First 12 rows:
1;
2;
2, 1;
2, 3;
2, 2, 3;
2, 2, 6, 1;
2, 2, 4, 3, 4;
2, 2, 4, 6, 2, 6;
2, 2, 4, 4, 2, 3, 9, 4;
2, 2, 4, 4, 2, 6, 6, 3, 12, 1;
2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5;
2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10;
-
z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a1[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]];
t = Table[a1[n], {n, 1, z}]; TableForm[Table[a1[n], {n, 1, z}]] (* A238325, array *)
u = Flatten[t] (* A238325, sequence *)
(* Peter J. C. Moses, 18 February 2014 *)
A237982
Triangular array read by rows: row n gives the NE partitions of n (see Comments).
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1
Offset: 1
The first 4 rows of the array of NW partitions:
1
2 .. 1 .. 1
3 .. 2 .. 1 .. 1 .. 1 .. 1
4 .. 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows: [4], [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
-
z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] := Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
(* Peter J. C. Moses, Feb 25 2014 *)
A237983
Triangular array read by rows: row n gives the SE partitions of n; see Comments.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The first 4 rows of the array of SE partitions:
1
1 .. 1
2 .. 1 .. 1 .. 1 .. 1
3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows: [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
-
z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] := Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
(* Peter J. C. Moses, Feb 25 2014 *)
Showing 1-4 of 4 results.
Comments