A003114
Number of partitions of n into parts 5k+1 or 5k+4.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
[ 1] [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
[ 3] [ 4 4 1 1 1 1 1 1 1 1 ]
[ 4] [ 4 4 4 1 1 1 1 ]
[ 5] [ 4 4 4 4 ]
[ 6] [ 6 1 1 1 1 1 1 1 1 1 1 ]
[ 7] [ 6 4 1 1 1 1 1 1 ]
[ 8] [ 6 4 4 1 1 ]
[ 9] [ 6 6 1 1 1 1 ]
[10] [ 6 6 4 ]
[11] [ 9 1 1 1 1 1 1 1 ]
[12] [ 9 4 1 1 1 ]
[13] [ 9 6 1 ]
[14] [ 11 1 1 1 1 1 ]
[15] [ 11 4 1 ]
[16] [ 14 1 1 ]
[17] [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
[ 1] [ 7 5 3 1 ]
[ 2] [ 8 5 3 ]
[ 3] [ 8 6 2 ]
[ 4] [ 9 5 2 ]
[ 5] [ 9 6 1 ]
[ 6] [ 9 7 ]
[ 7] [ 10 4 2 ]
[ 8] [ 10 5 1 ]
[ 9] [ 10 6 ]
[10] [ 11 4 1 ]
[11] [ 11 5 ]
[12] [ 12 3 1 ]
[13] [ 12 4 ]
[14] [ 13 3 ]
[15] [ 14 2 ]
[16] [ 15 1 ]
[17] [ 16 ]
(End)
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
- H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- George E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
- George E. Andrews; R. J. Baxter, A motivated proof of the Rogers-Ramanujan identities, Amer. Math. Monthly 96 (1989), no. 5, 401-409.
- M. Archibald, A. Blecher, S. Elizalde, and A. Knopfmacher, Subdiagonal and superdiagonal partitions, Afr. Mat. 36, 77 (2025). See p. 14.
- R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy)
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
- R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
- P. Jacob and P. Mathieu, Parafermionic derivation of Andrews-type multiple-sums, arXiv:hep-th/0505097, 2005.
- James Lepowsky and Minxian Zhu, A motivated proof of Gordon's identities, The Ramanujan Journal 29.1-3 (2012): 199-211.
- I. Martinjak, D. Svrtan, New Identities for the Polarized Partitions and Partitions with d-Distant Parts, J. Int. Seq. 17 (2014) # 14.11.4.
- Herman P. Robinson, Letter to N. J. A. Sloane, Jan 1974.
- A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), Research Paper 13, 122 pp.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities.
- Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019.
Cf.
A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see
A003114,
A003106,
A006141,
A264591,
A264592,
A264593,
A264594,
A264595. G[0] = G[1]+G[2] is given by
A003113.
-
a003114 = p a047209_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Jan 05 2011
-
a003114 = p 1 where
p _ 0 = 1
p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
-- Reinhard Zumkeller, Feb 19 2013
-
g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
-
CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
nmax = 60; kmax = nmax/5;
s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
-
{a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
A122129
Expansion of 1 + Sum_{k>0} x^k^2/((1-x)(1-x^2)...(1-x^(2k))).
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 37, 46, 57, 69, 84, 102, 123, 148, 177, 211, 252, 299, 353, 417, 491, 576, 675, 789, 920, 1071, 1244, 1442, 1670, 1929, 2224, 2562, 2946, 3381, 3876, 4437, 5072, 5791, 6602, 7517, 8551, 9714, 11021, 12493, 14145
Offset: 0
Clark Kimberling's SE partition comment, n=6: the 5 SE partitions are [1,1,1,1,1,1] from the partitions 6 and 1^6; [1,1,1,2,1] from 5,1 and 2,1^4; [1,1,3,1] from 4,2 and 2^2,1^2; [2,3,1] from 3,2,1 and 3^2 and 2^3; and [1,2,2,1] from 4,1^2 and 3,1^3. - _Wolfdieter Lang_, Mar 20 2014
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 9*x^8 + ...
G.f. = 1/q + q^39 + q^79 + 2*q^119 + 3*q^159 + 4*q^199 + 5*q^239 + ...
- G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.7). MR0858826 (88b:11063)
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(a), p. 591.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Willard G. Connor, Partition Theorems Related to Some Identities of Rogers and Watson, Transactions of the American Mathematical Society, Vol. 214 (Dec., 1975), pp. 95-111.
- Basil Gordon, Continued fractions of the Rogers-Ramanujan type, Duke Math. J. 32 (1965), 741-748. MR 32 # 1477.
- M. D. Hirschhorn, Some partition theorems of the Rogers-Ramanujan type, J. Combin. Theory Ser. A 27 (1979), no. 1, 33--37. MR0541341 (80j:05010). See Theorem 1. [From _N. J. A. Sloane_, Mar 19 2012]
- Michael Somos, Introduction to Ramanujan theta functions
- George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
-
f:=n->1/mul(1-q^(20*k+n),k=0..20);
f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19);
series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012.
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0,
1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]
[1+irem(d, 20)], d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Jul 12 2013
-
a[0] = 1; a[n_] := a[n] = Sum[Sum[d*{0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[d, 20]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2014, after Alois P. Heinz *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 28 2015 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20]), {x, 0, n}]; (* Michael Somos, Jun 28 2015 *)
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n-k^2)))), n))};
A238325
Array: row n gives the number of occurrences of each possible antidiagonal partition of n, arranged in reverse-Mathematica order.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 4, 3, 4, 2, 2, 4, 6, 2, 6, 2, 2, 4, 4, 2, 3, 9, 4, 2, 2, 4, 4, 2, 6, 6, 3, 12, 1, 2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5, 2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10, 2, 2, 4, 4, 2, 4, 6, 4, 4, 6, 3, 6, 12, 2, 6
Offset: 1
The Mathematica ordering of the 6 antidiagonal partitions of 8 follows: 3221, 32111, 22211, 221111, 2111111, 11111111. Frequencies of these among the 22 partitions of 8 are given in reverse Mathematica ordering as follows: 11111111 occurs 2 times, 2111111 occurs 2 times, 221111 occurs 4 times, 22211 occurs 6 times, 32111 occurs 2 times, and 3221 occurs 6 times, so that row 8 of the array is 2 2 4 6 2 6.
...
First 12 rows:
1;
2;
2, 1;
2, 3;
2, 2, 3;
2, 2, 6, 1;
2, 2, 4, 3, 4;
2, 2, 4, 6, 2, 6;
2, 2, 4, 4, 2, 3, 9, 4;
2, 2, 4, 4, 2, 6, 6, 3, 12, 1;
2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5;
2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10;
-
z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a1[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]];
t = Table[a1[n], {n, 1, z}]; TableForm[Table[a1[n], {n, 1, z}]] (* A238325, array *)
u = Flatten[t] (* A238325, sequence *)
(* Peter J. C. Moses, 18 February 2014 *)
A237982
Triangular array read by rows: row n gives the NE partitions of n (see Comments).
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1
Offset: 1
The first 4 rows of the array of NW partitions:
1
2 .. 1 .. 1
3 .. 2 .. 1 .. 1 .. 1 .. 1
4 .. 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows: [4], [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
-
z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] := Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
(* Peter J. C. Moses, Feb 25 2014 *)
A237985
Array: row n shows the square partitions of n.
Original entry on oeis.org
1, 2, 3, 4, 5, 4, 1, 6, 5, 1, 7, 6, 1, 5, 2, 8, 7, 1, 6, 2, 9, 8, 1, 7, 2, 6, 3, 10, 9, 1, 8, 2, 7, 3, 6, 4, 11, 10, 1, 9, 2, 8, 3, 7, 4, 7, 3, 1, 12, 11, 1, 10, 2, 9, 3, 8, 4, 8, 3, 1, 7, 4, 1, 13, 12, 1, 11, 2, 10, 3, 9, 4, 9, 3, 1, 8, 5, 8, 4, 1, 7, 5, 1
Offset: 1
The 7 square partitions of 12 are as follows: [12], [11,1], [10,2], [9,3], [8,4], [8,3,1], [7,4,1]. The Ferrers matrix of the partition [4,3,3,1,1] of 12 is shown here:
...
1 . 1 . 1 . 1 . 0
1 . 1 . 1 . 0 . 0
1 . 1 . 1 . 0 . 0
1 . 0 . 0 . 0 . 0
1 . 0 . 0 . 0 . 0.
The outermost square has 8 1s, the next has 3 1s, and the innermost, 1 1, so that [8,3,1] is a square partition of 12. The first 9 rows of the array:
1
2
3
4
5 4 1
6 5 1
7 6 1 5 2
8 7 1 6 2
9 8 1 7 2 6 3
-
z=20;
ferrersMatrix[list_]:=PadRight[Map[Table[1,{#}]&,#],{#,#}&[Max[#,Length[#]]]]&[list];
sqPart[list_]:=DeleteCases[Total[{Total[LowerTriangularize[#]+Transpose[UpperTriangularize[#,1]]]&[Reverse[LowerTriangularize[#]]],Reverse[Total[Transpose[LowerTriangularize[#]]+UpperTriangularize[#,1]]]&[Reverse[UpperTriangularize[#,1]]]}&[ferrersMatrix[list]]],0];
sqParts[n_]:=#[[Reverse[Ordering[PadRight[#]]]]]&[DeleteDuplicates[Map[sqPart,IntegerPartitions[n]]]]
Flatten[sq=Map[sqParts[#]&,Range[z]]] (*A237985*)
Map[Length,sq] (*A237980*)
(* Peter J. C. Moses, Feb 19 2014 *)
A238326
Array: row n gives the number of occurrences of each possible diagonal partition of n, arranged in reverse Mathematica order.
Original entry on oeis.org
1, 2, 3, 4, 1, 5, 2, 6, 3, 2, 7, 4, 4, 8, 5, 6, 3, 9, 6, 8, 6, 1, 10, 7, 10, 9, 4, 2, 11, 8, 12, 12, 8, 3, 2, 12, 9, 14, 15, 12, 5, 4, 4, 2, 13, 10, 16, 18, 16, 10, 5, 6, 3, 4, 14, 11, 18, 21, 20, 15, 6, 6, 8, 6, 6, 4, 15, 12, 20, 24, 24, 20, 7, 12, 10, 9, 8
Offset: 1
The Mathematica ordering of the 3 antidiagonal partitions of 6 follows: 2211, 21111, 111111. Frequencies of these among the 11 partitions of 6 are given in reverse Mathematica ordering as follows: 111111 occurs 6 times, 21111 occurs 3 times, and 2211 occurs 2 times, so that row 6 of the array is 6 3 2.
...
First 9 rows:
1
2
3
4 1
5 2
6 3 2
7 4 4
8 5 6 3
9 6 8 6 1
-
z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; diagPartSE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[m, #] &, Range[-#, #] &[Length[m] - 1]]]; Tally[Map[ DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[z]]]; a1[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[n]]]]]; t = Table[a1[n], {n, 1, z}]; u = Flatten[t]
Map[Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[#]]]]] &, Range[z]] // TableForm
(* Peter J. C. Moses, Feb 25 2014 *)
A237983
Triangular array read by rows: row n gives the SE partitions of n; see Comments.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
The first 4 rows of the array of SE partitions:
1
1 .. 1
2 .. 1 .. 1 .. 1 .. 1
3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows: [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
-
z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]}; Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] := Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &, Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
(* Peter J. C. Moses, Feb 25 2014 *)
A238883
Array: row n gives number of times each upper triangular partition U(p) occurs as p ranges through the partitions of n.
Original entry on oeis.org
1, 2, 3, 4, 1, 4, 3, 8, 1, 2, 10, 3, 2, 14, 5, 2, 1, 20, 3, 4, 2, 1, 30, 3, 2, 1, 6, 36, 13, 2, 3, 2, 52, 10, 4, 6, 3, 2, 70, 9, 9, 4, 6, 3, 94, 16, 6, 5, 10, 2, 2, 122, 24, 4, 8, 1, 12, 2, 2, 1, 160, 33, 4, 12, 6, 4, 9, 2, 1, 206, 37, 18, 14, 6, 2, 6, 8
Offset: 1
First 12 rows:
1
2
3
4 .. 1
4 .. 3
8 .. 1 .. 2
10 . 3 .. 2
14 . 5 .. 2 .. 1
20 . 3 .. 4 .. 2 .. 1
30 . 3 .. 2 .. 1 .. 6
36 . 13 . 2 .. 3 .. 2
52 . 10 . 4 .. 6 .. 3 .. 2
Row 6 arises as follows: there are 3 upper triangular (UT) partitions: 51, 33, 321, of which 51 is produced from the 8 partitions 6, 51, 42, 411, 3111, 2211, 21111, and 111111, while the UT partition 33 is produced from the single partition 321, and the only other UT partition of 6, namely 321, is produced from the partitions 33 and 222. (For example, the rows of the Ferrers matrix of 222 are (1,1,0), (1,1,0), (1,1,0), with principal antidiagonal (0,1,1), so that u = 3, v = 2, w = 1.)
-
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; ut[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[Reverse[ferrersMatrix[list]]], # > 0 &];
t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[ Tally[Map[Reverse[Sort[#]] &, Map[ut, IntegerPartitions[n]]]]]
u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
z = 20; Table[Flatten[u[n]], {n, 1, z}]
Flatten[Table[u[n], {n, 1, z}]]
Table[v[n], {n, 1, z}]
Flatten[Table[v[n], {n, 1, z}]] (* A238883 *)
Table[Length[v[n]], {n, 1, z}] (* A238884 *)
(* Peter J. C. Moses, Mar 04 2014 *)
A238885
Array: row n gives number of times each possible lower triangular partition L(p) occurs as p ranges through the partitions of n.
Original entry on oeis.org
1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 6, 1, 4, 2, 2, 8, 2, 4, 4, 2, 2, 8, 2, 6, 1, 8, 1, 2, 2, 10, 2, 6, 2, 12, 4, 2, 2, 2, 10, 2, 8, 2, 12, 1, 12, 4, 1, 2, 2, 12, 2, 8, 2, 16, 2, 12, 6, 9, 4, 2, 2, 12, 2, 10, 2, 16, 2, 16, 8, 1, 18, 6, 4, 2, 2, 14, 2
Offset: 1
First 12 rows:
1
2
2 .. 1
2 .. 3
2 .. 2 .. 3
2 .. 2 .. 6 .. 1
2 .. 2 .. 6 .. 1 .. 4
2 .. 2 .. 8 .. 2 .. 4 .. 4
2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1
2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2
2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1
2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4
Row 4 arises as follows: there are 3 lower triangular (LT) partitions: 41, 311, 221, of which 41 is produced from the 2 partitions 5 and 11111, while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3. (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.)
-
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
z = 10; Table[Flatten[u[n]], {n, 1, z}]
Flatten[Table[u[n], {n, 1, z}]]
Table[v[n], {n, 1, z}]
Flatten[Table[v[n], {n, 1, z}]] (* A238885 *)
Table[Length[v[n]], {n, 1, z}] (* A238886 *)
(* Peter J. C. Moses, Mar 04 2014 *)
A238886
Number of lower triangular partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38, 40, 43, 45, 48, 50, 53, 55, 58, 60, 63, 66, 69, 72, 75, 78
Offset: 1
First 12 rows of A238885:
1
2
2 .. 1
2 .. 3
2 .. 2 .. 3
2 .. 2 .. 6 .. 1
2 .. 2 .. 6 .. 1 .. 4
2 .. 2 .. 8 .. 2 .. 4 .. 4
2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1
2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2
2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1
2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4
Row 4 arises as follows: there are 3 lower triangular (LT) partitions: 41, 311, 221, of which 41 is produced from these 2 partitions: 5 and 11111; while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3. (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.) Since all the partitions of 5 have been used, there can be no other LT partition of 5 than 41, 311, 221. Therefore, a(5) = 3.
-
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
z = 10; Table[Flatten[u[n]], {n, 1, z}]
Flatten[Table[u[n], {n, 1, z}]]
Table[v[n], {n, 1, z}]
Flatten[Table[v[n], {n, 1, z}]] (* A238885 *)
Table[Length[v[n]], {n, 1, z}] (* A238886 *)
(* Peter J. C. Moses, Mar 04 2014 *)
Showing 1-10 of 17 results.
Comments