cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A003114 Number of partitions of n into parts 5k+1 or 5k+4.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 61, 70, 79, 91, 102, 117, 131, 149, 167, 189, 211, 239, 266, 299, 333, 374, 415, 465, 515, 575, 637, 709, 783, 871, 961, 1065, 1174, 1299, 1429, 1579, 1735, 1913, 2100, 2311, 2533, 2785
Offset: 0

Views

Author

Keywords

Comments

Expansion of Rogers-Ramanujan function G(x) in powers of x.
Same as number of partitions into distinct parts where the difference between successive parts is >= 2.
As a formal power series, the limit of polynomials S(n,x): S(n,x)=sum(T(i,x),0<=i<=n); T(i,x)=S(i-2,x).x^i; T(0,x)=1,T(1,x)=x; S(n,1)=A000045(n+1), the Fibonacci sequence. - Claude Lenormand (claude.lenormand(AT)free.fr), Feb 04 2001
The Rogers-Ramanujan identity is 1 + Sum_{n >= 1} t^(n^2)/((1-t)*(1-t^2)*...*(1-t^n)) = Product_{n >= 1} 1/((1-t^(5*n-1))*(1-t^(5*n-4))).
Coefficients in expansion of permanent of infinite tridiagonal matrix:
1 1 0 0 0 0 0 0 ...
x 1 1 0 0 0 0 0 ...
0 x^2 1 1 0 0 0 ...
0 0 x^3 1 1 0 0 ...
0 0 0 x^4 1 1 0 ...
................... - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that the smallest part is greater than or equal to number of parts. - Vladeta Jovovic, Jul 17 2004
Also number of partitions of n such that if k is the largest part, then each of {1, 2, ..., k-1} occur at least twice. Example: a(9)=5 because we have [3, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Feb 27 2006
Also number of partitions of n such that if k is the largest part, then k occurs at least k times. Example: a(9)=5 because we have [3, 3, 3], [2, 2, 2, 2, 1], [2, 2, 2, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1]. - Emeric Deutsch, Apr 16 2006
a(n) = number of NW partitions of n, for n >= 1; see A237981.
For more about the generalized Rogers-Ramanujan series G[i](x) see the Andrews-Baxter and Lepowsky-Zhu papers. The present series is G[1](x). - N. J. A. Sloane, Nov 22 2015
Convolution of A109700 and A109697. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
G.f. = 1/q + q^59 + q^119 + q^179 + 2*q^239 + 2*q^299 + 3*q^359 + 3*q^419 + ...
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(16)=17 partitions of 16 where all parts are 1 or 4 (mod 5) are
  [ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 2]  [ 4 1 1 1 1 1 1 1 1 1 1 1 1 ]
  [ 3]  [ 4 4 1 1 1 1 1 1 1 1 ]
  [ 4]  [ 4 4 4 1 1 1 1 ]
  [ 5]  [ 4 4 4 4 ]
  [ 6]  [ 6 1 1 1 1 1 1 1 1 1 1 ]
  [ 7]  [ 6 4 1 1 1 1 1 1 ]
  [ 8]  [ 6 4 4 1 1 ]
  [ 9]  [ 6 6 1 1 1 1 ]
  [10]  [ 6 6 4 ]
  [11]  [ 9 1 1 1 1 1 1 1 ]
  [12]  [ 9 4 1 1 1 ]
  [13]  [ 9 6 1 ]
  [14]  [ 11 1 1 1 1 1 ]
  [15]  [ 11 4 1 ]
  [16]  [ 14 1 1 ]
  [17]  [ 16 ]
The a(16)=17 partitions of 16 where successive parts differ by at least 2 are
  [ 1]  [ 7 5 3 1 ]
  [ 2]  [ 8 5 3 ]
  [ 3]  [ 8 6 2 ]
  [ 4]  [ 9 5 2 ]
  [ 5]  [ 9 6 1 ]
  [ 6]  [ 9 7 ]
  [ 7]  [ 10 4 2 ]
  [ 8]  [ 10 5 1 ]
  [ 9]  [ 10 6 ]
  [10]  [ 11 4 1 ]
  [11]  [ 11 5 ]
  [12]  [ 12 3 1 ]
  [13]  [ 12 4 ]
  [14]  [ 13 3 ]
  [15]  [ 14 2 ]
  [16]  [ 15 1 ]
  [17]  [ 16 ]
(End)
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109, 238.
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(e), p. 591.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 669.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 107.
  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 90-92.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, pp. 290-291.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A188216 (least part k occurs at least k times).
For the generalized Rogers-Ramanujan series G[1], G[2], G[3], G[4], G[5], G[6], G[7], G[8] see A003114, A003106, A006141, A264591, A264592, A264593, A264594, A264595. G[0] = G[1]+G[2] is given by A003113.
Row sums of A268187.

Programs

  • Haskell
    a003114 = p a047209_list where
       p _      0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Jan 05 2011
    
  • Haskell
    a003114 = p 1 where
       p _ 0 = 1
       p k m = if k > m then 0 else p (k + 2) (m - k) + p (k + 1) m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    g:=sum(x^(k^2)/product(1-x^j,j=1..k),k=0..10): gser:=series(g,x=0,65): seq(coeff(gser,x,n),n=0..60); # Emeric Deutsch, Feb 27 2006
  • Mathematica
    CoefficientList[ Series[Sum[x^k^2/Product[1 - x^j, {j, 1, k}], {k, 0, 10}], {x, 0, 65}], x][[1 ;; 61]] (* Jean-François Alcover, Apr 08 2011, after Emeric Deutsch *)
    Table[Count[IntegerPartitions[n], p_ /; Min[p] >= Length[p]], {n, 0, 24}] (* Clark Kimberling, Feb 13 2014 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x^1, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{-1, 0, 0, -1, 0}[[Mod[k, 5, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, May 17 2015 *)
    nmax = 60; kmax = nmax/5;
    s = Flatten[{Range[0, kmax]*5 + 1}~Join~{Range[0, kmax]*5 + 4}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 02 2020 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k - 1) / (1 - x^k) * (1 + x * O(x^(n - k^2))), 1), n))}; /* Michael Somos, Oct 15 2008 */
    

Formula

G.f.: Sum_{k>=0} x^(k^2)/(Product_{i=1..k} 1-x^i).
The g.f. above is the special case D=2 of sum(n>=0, x^(D*n*(n+1)/2 - (D-1)*n) / prod(k=1..n, 1-x^k) ), the g.f. for partitions into distinct part where the difference between successive parts is >= D. - Joerg Arndt, Mar 31 2014
G.f.: 1 + sum(i=1, oo, x^(5i+1)/prod(j=1 or 4 mod 5 and j<=5i+1, 1-x^j) + x^(5i+4)/prod(j=1 or 4 mod 5 and j<=5i+4, 1-x^j)). - Jon Perry, Jul 06 2004
G.f.: (Product_{k>0} 1 + x^(2*k)) * (Sum_{k>=0} x^(k^2) / (Product_{i=1..k} 1 - x^(4*i))). - Michael Somos, Oct 19 2006
Euler transform of period 5 sequence [ 1, 0, 0, 1, 0, ...]. - Michael Somos, Oct 15 2008
Expansion of f(-x^5) / f(-x^1, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, May 17 2015
Expansion of f(-x^2, -x^3) / f(-x) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 13 2015
a(n) ~ phi^(1/2) * exp(2*Pi*sqrt(n/15)) / (2 * 3^(1/4) * 5^(1/2) * n^(3/4)) * (1 - (3*sqrt(15)/(16*Pi) + Pi/(60*sqrt(15))) / sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 23 2015, extended Jan 24 2017
a(n) = (1/n)*Sum_{k=1..n} A284150(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

A122129 Expansion of 1 + Sum_{k>0} x^k^2/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 37, 46, 57, 69, 84, 102, 123, 148, 177, 211, 252, 299, 353, 417, 491, 576, 675, 789, 920, 1071, 1244, 1442, 1670, 1929, 2224, 2562, 2946, 3381, 3876, 4437, 5072, 5791, 6602, 7517, 8551, 9714, 11021, 12493, 14145
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
a(n) = number of SE partitions of n, for n >= 1; see A237981. - Clark Kimberling, Mar 19 2014
In Watson 1937 page 275 he writes "Psi_0(1,q) = prod_1^oo (1+q^{2n}) G(q^8)" so this is the expansion in powers of q^2. - Michael Somos, Jun 28 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(x) (see A003114), H(x) (A003106).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of integer partitions of n with every other pair of adjacent parts strictly decreasing, as in the pattern a > b >= c > d >= e for a partition (a, b, c, d, e). For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(611) (531)
(3221) (621)
(711)
(4221)
(32211)
The even-length case is A351008. The odd-length case appears to be A122130. Swapping strictly and weakly decreasing relations appears to give A122135. The alternately unequal and equal case is A351006, strict A035457, opposite A351005, even-length A351007. (End)
Wiseman's first conjecture above was proved by Gordon, Theorem 7. For two other combinatorial interpretations of this sequence see Connor, Proposition 1. - Peter Bala, Dec 22 2024

Examples

			Clark Kimberling's SE partition comment, n=6: the 5 SE partitions are [1,1,1,1,1,1] from the partitions 6 and 1^6; [1,1,1,2,1] from 5,1 and 2,1^4; [1,1,3,1] from 4,2 and 2^2,1^2; [2,3,1] from 3,2,1 and 3^2 and 2^3; and [1,2,2,1] from 4,1^2 and 3,1^3. - _Wolfdieter Lang_, Mar 20 2014
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 9*x^8 + ...
G.f. = 1/q + q^39 + q^79 + 2*q^119 + 3*q^159 + 4*q^199 + 5*q^239 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.7). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(a), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012.
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0,
           1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]
          [1+irem(d, 20)], d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 12 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Sum[d*{0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[d, 20]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2014, after Alois P. Heinz *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20]), {x, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n-k^2)))), n))};

Formula

Euler transform of period 20 sequence [ 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, ...].
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^4,-x^16)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(x^3, x^7) / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 28 2015
Expansion of f(-x^8, -x^12) / psi(-x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 28 2015
Expansion of G(x^4) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 28 2015
G.f.: Sum_{k>=0} x^k^2 / ((1 - x) * (1 - x^2) ... (1 - x^(2*k))).
G.f.: 1 / (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(20*k-4)) * (1 - x^(20*k-16))).
Let f(n) = 1/Product_{k >= 0} (1 - q^(20k+n)). Then g.f. is f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19). - N. J. A. Sloane, Mar 19 2012
a(n) is the number of partitions of n into parts that are either odd or == +-4 (mod 20). - Michael Somos, Jun 28 2015
a(n) ~ (3+sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A238325 Array: row n gives the number of occurrences of each possible antidiagonal partition of n, arranged in reverse-Mathematica order.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 4, 3, 4, 2, 2, 4, 6, 2, 6, 2, 2, 4, 4, 2, 3, 9, 4, 2, 2, 4, 4, 2, 6, 6, 3, 12, 1, 2, 2, 4, 4, 2, 4, 6, 3, 6, 6, 12, 5, 2, 2, 4, 4, 2, 4, 6, 6, 4, 6, 3, 18, 2, 4, 10, 2, 2, 4, 4, 2, 4, 6, 4, 4, 6, 3, 6, 12, 2, 6
Offset: 1

Views

Author

Keywords

Comments

Suppose that p is a partition of n, let F(p) be its Ferrers matrix, as defined at A237981, and let mXm be the size of F(p). The numbers of 1's in each of the 2m-1 antidiagonals of F(p) form a partition of n. Any partition which is associated with a partition of n in this manner is introduced here as an antidiagonal partition of n. A000041(n) = sum of the numbers in row n; A000009(n) = number of terms in row n, since the antidiagonal partitions of n are the conjugates of the strict partitions of n.

Examples

			The Mathematica ordering of the 6 antidiagonal partitions of 8 follows:  3221, 32111, 22211, 221111, 2111111, 11111111.  Frequencies of these among the 22 partitions of 8 are given in reverse Mathematica ordering as follows:  11111111 occurs 2 times, 2111111 occurs 2 times, 221111 occurs 4 times, 22211 occurs 6 times, 32111 occurs 2 times, and 3221 occurs 6 times, so that row 8 of the array is 2 2 4 6 2 6.
...
First 12 rows:
  1;
  2;
  2,  1;
  2,  3;
  2,  2,  3;
  2,  2,  6,  1;
  2,  2,  4,  3,  4;
  2,  2,  4,  6,  2,  6;
  2,  2,  4,  4,  2,  3,  9,  4;
  2,  2,  4,  4,  2,  6,  6,  3, 12,  1;
  2,  2,  4,  4,  2,  4,  6,  3,  6,  6, 12,  5;
  2,  2,  4,  4,  2,  4,  6,  6,  4,  6,  3, 18,  2,  4, 10;
		

Crossrefs

Cf. A238326.

Programs

  • Mathematica
    z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; antiDiagPartNE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[Reverse[m], #] &, Range[-#, #] &[Length[m] - 1]]]; a1[n_] :=  Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, antiDiagPartNE[#]]]], 0] &, IntegerPartitions[n]]]]];
    t = Table[a1[n], {n, 1, z}]; TableForm[Table[a1[n], {n, 1, z}]]   (* A238325, array *)
    u = Flatten[t] (* A238325, sequence *)
    (* Peter J. C. Moses, 18 February 2014 *)

Extensions

Example corrected by Peter J. Taylor, Apr 10 2022

A237982 Triangular array read by rows: row n gives the NE partitions of n (see Comments).

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 5, 1, 1, 4, 3, 4, 2, 1, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE. The number of NE partitions of n, and also the number of SW partitions of n, is A237329(n), for n >=1.
The order is: each partition has nonincreasing parts and the partitions are ordered anti-lexicographic (called "Mathematica order" in the example). - Wolfdieter Lang, Mar 21 2014

Examples

			The first 4 rows of the array of NW partitions:
1
2 .. 1 .. 1
3 .. 2 .. 1 .. 1 .. 1 .. 1
4 .. 3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows:  [4], [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
		

Crossrefs

Programs

  • Mathematica
    z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
    Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
    Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
    Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
    Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
    (* Peter J. C. Moses, Feb 25 2014 *)

A237985 Array: row n shows the square partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 1, 6, 5, 1, 7, 6, 1, 5, 2, 8, 7, 1, 6, 2, 9, 8, 1, 7, 2, 6, 3, 10, 9, 1, 8, 2, 7, 3, 6, 4, 11, 10, 1, 9, 2, 8, 3, 7, 4, 7, 3, 1, 12, 11, 1, 10, 2, 9, 3, 8, 4, 8, 3, 1, 7, 4, 1, 13, 12, 1, 11, 2, 10, 3, 9, 4, 9, 3, 1, 8, 5, 8, 4, 1, 7, 5, 1
Offset: 1

Views

Author

Keywords

Comments

Suppose that p is a partition of n. Let m X m be the size of its Ferrers matrix, f(p), defined at A237981. Then f(p) consists of ceiling(m/2) concentric squares, where the innermost square is a single point if m is odd. The square partition of p is introduced here as the partition [x(1), x(2), ..., x(k)], where x(i) is the number of 1s in the i-th concentric square, where the squares are taken in order starting with the outermost.

Examples

			The 7 square partitions of 12 are as follows: [12], [11,1], [10,2], [9,3], [8,4], [8,3,1], [7,4,1]. The Ferrers matrix of the partition [4,3,3,1,1] of 12 is shown here:
...
1 . 1 . 1 . 1 . 0
1 . 1 . 1 . 0 . 0
1 . 1 . 1 . 0 . 0
1 . 0 . 0 . 0 . 0
1 . 0 . 0 . 0 . 0.
The outermost square has 8 1s, the next has 3 1s, and the innermost, 1 1, so that [8,3,1] is a square partition of 12. The first 9 rows of the array:
1
2
3
4
5 4 1
6 5 1
7 6 1 5 2
8 7 1 6 2
9 8 1 7 2 6 3
		

Crossrefs

Programs

  • Mathematica
    z=20;
    ferrersMatrix[list_]:=PadRight[Map[Table[1,{#}]&,#],{#,#}&[Max[#,Length[#]]]]&[list];
    sqPart[list_]:=DeleteCases[Total[{Total[LowerTriangularize[#]+Transpose[UpperTriangularize[#,1]]]&[Reverse[LowerTriangularize[#]]],Reverse[Total[Transpose[LowerTriangularize[#]]+UpperTriangularize[#,1]]]&[Reverse[UpperTriangularize[#,1]]]}&[ferrersMatrix[list]]],0];
    sqParts[n_]:=#[[Reverse[Ordering[PadRight[#]]]]]&[DeleteDuplicates[Map[sqPart,IntegerPartitions[n]]]]
    Flatten[sq=Map[sqParts[#]&,Range[z]]] (*A237985*)
    Map[Length,sq] (*A237980*)
    (* Peter J. C. Moses, Feb 19 2014 *)

A238326 Array: row n gives the number of occurrences of each possible diagonal partition of n, arranged in reverse Mathematica order.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 2, 6, 3, 2, 7, 4, 4, 8, 5, 6, 3, 9, 6, 8, 6, 1, 10, 7, 10, 9, 4, 2, 11, 8, 12, 12, 8, 3, 2, 12, 9, 14, 15, 12, 5, 4, 4, 2, 13, 10, 16, 18, 16, 10, 5, 6, 3, 4, 14, 11, 18, 21, 20, 15, 6, 6, 8, 6, 6, 4, 15, 12, 20, 24, 24, 20, 7, 12, 10, 9, 8
Offset: 1

Views

Author

Keywords

Comments

Suppose that p is a partition of n, let F(p) be its Ferrers matrix, as defined at A237981, and let mXm be the size of F(p). The numbers of 1s in each of the 2m-1 diagonals of F(p) form a partition of n. Any partition which is associated with a partition of n in this manner is introduced here as a diagonal partition of n. A000041(n) = sum of the numbers in row n; A003114(n) = number of terms in row n. Every diagonal partition is an antidiagonal partition, as in A238325 (but not conversely).

Examples

			The Mathematica ordering of the 3 antidiagonal partitions of 6 follows: 2211, 21111, 111111. Frequencies of these among the 11 partitions of 6 are given in reverse Mathematica ordering as follows: 111111 occurs 6 times, 21111 occurs 3 times, and 2211 occurs 2 times, so that row 6 of the array is 6 3 2.
...
First 9 rows:
  1
  2
  3
  4 1
  5 2
  6 3 2
  7 4 4
  8 5 6 3
  9 6 8 6 1
		

Crossrefs

Programs

  • Mathematica
    z = 20; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; diagPartSE[list_] := Module[{m = ferrersMatrix[list]}, Map[Diagonal[m, #] &, Range[-#, #] &[Length[m] - 1]]]; Tally[Map[  DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[z]]]; a1[n_] := Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[n]]]]]; t = Table[a1[n], {n, 1, z}]; u = Flatten[t]
    Map[Last[Transpose[Tally[Map[DeleteCases[Reverse[Sort[Map[Count[#, 1] &, diagPartSE[#]]]], 0] &, IntegerPartitions[#]]]]] &, Range[z]] // TableForm
    (* Peter J. C. Moses, Feb 25 2014 *)

A237983 Triangular array read by rows: row n gives the SE partitions of n; see Comments.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

See Comments at A237981 for definitions of the directional partitions, NW, NE, SW, SE. The number of SE partitions of n is A122129(n) for n >=1.

Examples

			The first 4 rows of the array of SE partitions:
1
1 .. 1
2 .. 1 .. 1 .. 1 .. 1
3 .. 1 .. 2 .. 1 .. 1 .. 1 .. 1 .. 1 .. 1
Row 4, for example, represents the 4 NE partitions of 4 as follows:  [3,1], [2,1,1], [1,1,1,1], listed in "Mathematica order".
		

Crossrefs

Programs

  • Mathematica
    z = 10; ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; cornerPart[list_] := Module[{f = ferrersMatrix[list], u, l, ur, lr, nw, ne, se, sw}, {u, l} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[f]; {ur, lr} = {UpperTriangularize[#, 1], LowerTriangularize[#]} &[Reverse[f]]; {nw, ne, se, sw} = {Total[Transpose[u]] + Total[l], Total[ur] + Total[Transpose[lr]], Total[u] + Total[Transpose[l]], Total[Transpose[ur]] + Total[lr]};    Map[DeleteCases[Reverse[Sort[#]], 0] &, {nw, ne, se, sw}]]; cornerParts[n_] :=  Map[#[[Reverse[Ordering[PadRight[#]]]]] &, Map[DeleteDuplicates[#] &,    Transpose[Map[cornerPart, IntegerPartitions[n]]]]]; cP = Map[cornerParts, Range[z]];
    Flatten[Map[cP[[#, 1]] &, Range[Length[cP]]]](*NW corner: A237981*)
    Flatten[Map[cP[[#, 2]] &, Range[Length[cP]]]](*NE corner: A237982*)
    Flatten[Map[cP[[#, 3]] &, Range[Length[cP]]]](*SE corner: A237983*)
    Flatten[Map[cP[[#, 4]] &, Range[Length[cP]]]](*SW corner: A237982*)
    (* Peter J. C. Moses, Feb 25 2014 *)

A238883 Array: row n gives number of times each upper triangular partition U(p) occurs as p ranges through the partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 8, 1, 2, 10, 3, 2, 14, 5, 2, 1, 20, 3, 4, 2, 1, 30, 3, 2, 1, 6, 36, 13, 2, 3, 2, 52, 10, 4, 6, 3, 2, 70, 9, 9, 4, 6, 3, 94, 16, 6, 5, 10, 2, 2, 122, 24, 4, 8, 1, 12, 2, 2, 1, 160, 33, 4, 12, 6, 4, 9, 2, 1, 206, 37, 18, 14, 6, 2, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2014

Keywords

Comments

Suppose that p is a partition. Let u, v, w be the number of 1's above, on, and below the principal antidiagonal, respectively, of the Ferrers matrix of p defined at A237981. The upper triangular partition of p, denoted by U(p), is {u,v} if w = 0 and {u,v,w} otherwise. In row n, the counted partitions are taken in Mathematica order (i.e., reverse lexicographic). A000041 = sum of numbers in row n, and A238884(n) = (number of numbers in row n) = number of upper triangular partitions of n.

Examples

			First 12 rows:
1
2
3
4 .. 1
4 .. 3
8 .. 1 .. 2
10 . 3 .. 2
14 . 5 .. 2 .. 1
20 . 3 .. 4 .. 2 .. 1
30 . 3 .. 2 .. 1 .. 6
36 . 13 . 2 .. 3 .. 2
52 . 10 . 4 .. 6 .. 3 .. 2
Row 6 arises as follows:  there are 3 upper triangular (UT) partitions:  51, 33, 321, of which 51 is produced from the 8 partitions  6, 51, 42, 411, 3111, 2211, 21111, and 111111, while the UT partition 33 is produced from the single partition 321, and the only other UT partition of 6, namely 321, is produced from the partitions 33 and 222.  (For example, the rows of the Ferrers matrix of 222 are (1,1,0), (1,1,0), (1,1,0), with principal antidiagonal (0,1,1), so that u = 3, v = 2, w = 1.)
		

Crossrefs

Programs

  • Mathematica
    ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; ut[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[Reverse[ferrersMatrix[list]]], # > 0 &];
    t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[  Tally[Map[Reverse[Sort[#]] &, Map[ut, IntegerPartitions[n]]]]]
    u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
    z = 20; Table[Flatten[u[n]], {n, 1, z}]
    Flatten[Table[u[n], {n, 1, z}]]
    Table[v[n], {n, 1, z}]
    Flatten[Table[v[n], {n, 1, z}]] (* A238883 *)
    Table[Length[v[n]], {n, 1, z}]  (* A238884 *)
    (* Peter J. C. Moses, Mar 04 2014 *)

A238885 Array: row n gives number of times each possible lower triangular partition L(p) occurs as p ranges through the partitions of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 6, 1, 4, 2, 2, 8, 2, 4, 4, 2, 2, 8, 2, 6, 1, 8, 1, 2, 2, 10, 2, 6, 2, 12, 4, 2, 2, 2, 10, 2, 8, 2, 12, 1, 12, 4, 1, 2, 2, 12, 2, 8, 2, 16, 2, 12, 6, 9, 4, 2, 2, 12, 2, 10, 2, 16, 2, 16, 8, 1, 18, 6, 4, 2, 2, 14, 2
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2014

Keywords

Comments

Suppose that p is a partition. Let u, v, w be the number of 1's above, on, and below the principal diagonal, respectively, of the Ferrers matrix of p defined at A237981. The lower triangular partition of p, denoted by L(p), is {u,v} if w = 0 and {u,v,w} otherwise.
In row n, the counted partitions are taken in Mathematica order (i.e., reverse lexicographic). A000041 = sum of numbers in row n, and A238886(n) = (number of numbers in row n) = number of lower triangular partitions of n.

Examples

			First 12 rows:
1
2
2 .. 1
2 .. 3
2 .. 2 .. 3
2 .. 2 .. 6 .. 1
2 .. 2 .. 6 .. 1 .. 4
2 .. 2 .. 8 .. 2 .. 4 .. 4
2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1
2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2
2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1
2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4
Row 4 arises as follows:  there are 3 lower triangular (LT) partitions:  41, 311, 221, of which 41 is produced from the 2 partitions 5 and 11111, while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3.  (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.)
		

Crossrefs

Programs

  • Mathematica
    ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
    z = 10; Table[Flatten[u[n]], {n, 1, z}]
    Flatten[Table[u[n], {n, 1, z}]]
    Table[v[n], {n, 1, z}]
    Flatten[Table[v[n], {n, 1, z}]]  (* A238885 *)
    Table[Length[v[n]], {n, 1, z}]  (* A238886 *)
    (* Peter J. C. Moses, Mar 04 2014 *)

A238886 Number of lower triangular partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 38, 40, 43, 45, 48, 50, 53, 55, 58, 60, 63, 66, 69, 72, 75, 78
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2014

Keywords

Comments

Suppose that p is a partition. Let u, v, w be the number of 1's above, on, and below the principal diagonal, respectively, of the Ferrers matrix of p defined at A237981. The lower triangular partition of p, denoted by L(p), is {u,v} if w = 0 and {u,v,w} otherwise. In row n, the counted partitions are taken in Mathematica order (i.e., reverse lexicographic). a(n) = number of numbers in row n of the array at A238885.

Examples

			First 12 rows of A238885:
1
2
2 .. 1
2 .. 3
2 .. 2 .. 3
2 .. 2 .. 6 .. 1
2 .. 2 .. 6 .. 1 .. 4
2 .. 2 .. 8 .. 2 .. 4 .. 4
2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1
2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2
2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1
2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4
Row 4 arises as follows:  there are 3 lower triangular (LT) partitions:  41, 311, 221, of which 41 is produced from these 2 partitions: 5 and 11111; while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3.  (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.)  Since all the partitions of 5 have been used, there can be no other LT partition of 5 than 41, 311, 221.  Therefore, a(5) = 3.
		

Crossrefs

Programs

  • Mathematica
    ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]
    z = 10; Table[Flatten[u[n]], {n, 1, z}]
    Flatten[Table[u[n], {n, 1, z}]]
    Table[v[n], {n, 1, z}]
    Flatten[Table[v[n], {n, 1, z}]]  (* A238885 *)
    Table[Length[v[n]], {n, 1, z}]  (* A238886 *)
    (* Peter J. C. Moses, Mar 04 2014 *)
Showing 1-10 of 17 results. Next