A238883 Array: row n gives number of times each upper triangular partition U(p) occurs as p ranges through the partitions of n.
1, 2, 3, 4, 1, 4, 3, 8, 1, 2, 10, 3, 2, 14, 5, 2, 1, 20, 3, 4, 2, 1, 30, 3, 2, 1, 6, 36, 13, 2, 3, 2, 52, 10, 4, 6, 3, 2, 70, 9, 9, 4, 6, 3, 94, 16, 6, 5, 10, 2, 2, 122, 24, 4, 8, 1, 12, 2, 2, 1, 160, 33, 4, 12, 6, 4, 9, 2, 1, 206, 37, 18, 14, 6, 2, 6, 8
Offset: 1
Examples
First 12 rows: 1 2 3 4 .. 1 4 .. 3 8 .. 1 .. 2 10 . 3 .. 2 14 . 5 .. 2 .. 1 20 . 3 .. 4 .. 2 .. 1 30 . 3 .. 2 .. 1 .. 6 36 . 13 . 2 .. 3 .. 2 52 . 10 . 4 .. 6 .. 3 .. 2 Row 6 arises as follows: there are 3 upper triangular (UT) partitions: 51, 33, 321, of which 51 is produced from the 8 partitions 6, 51, 42, 411, 3111, 2211, 21111, and 111111, while the UT partition 33 is produced from the single partition 321, and the only other UT partition of 6, namely 321, is produced from the partitions 33 and 222. (For example, the rows of the Ferrers matrix of 222 are (1,1,0), (1,1,0), (1,1,0), with principal antidiagonal (0,1,1), so that u = 3, v = 2, w = 1.)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..300
- Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers
Programs
-
Mathematica
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; ut[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[Reverse[ferrersMatrix[list]]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[ Tally[Map[Reverse[Sort[#]] &, Map[ut, IntegerPartitions[n]]]]] u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]] z = 20; Table[Flatten[u[n]], {n, 1, z}] Flatten[Table[u[n], {n, 1, z}]] Table[v[n], {n, 1, z}] Flatten[Table[v[n], {n, 1, z}]] (* A238883 *) Table[Length[v[n]], {n, 1, z}] (* A238884 *) (* Peter J. C. Moses, Mar 04 2014 *)
Comments