A238885 Array: row n gives number of times each possible lower triangular partition L(p) occurs as p ranges through the partitions of n.
1, 2, 2, 1, 2, 3, 2, 2, 3, 2, 2, 6, 1, 2, 2, 6, 1, 4, 2, 2, 8, 2, 4, 4, 2, 2, 8, 2, 6, 1, 8, 1, 2, 2, 10, 2, 6, 2, 12, 4, 2, 2, 2, 10, 2, 8, 2, 12, 1, 12, 4, 1, 2, 2, 12, 2, 8, 2, 16, 2, 12, 6, 9, 4, 2, 2, 12, 2, 10, 2, 16, 2, 16, 8, 1, 18, 6, 4, 2, 2, 14, 2
Offset: 1
Examples
First 12 rows: 1 2 2 .. 1 2 .. 3 2 .. 2 .. 3 2 .. 2 .. 6 .. 1 2 .. 2 .. 6 .. 1 .. 4 2 .. 2 .. 8 .. 2 .. 4 .. 4 2 .. 2 .. 8 .. 2 .. 6 .. 1 .. 8 .. 1 2 .. 2 .. 10 . 2 .. 6 .. 2 .. 12 . 4 .. 2 2 .. 2 .. 10 . 2 .. 8 .. 2 .. 12 . 1 .. 12 . 4 .. 1 2 .. 2 .. 12 . 2 .. 8 .. 2 .. 16 . 2 .. 12 . 6 .. 9 .. 4 Row 4 arises as follows: there are 3 lower triangular (LT) partitions: 41, 311, 221, of which 41 is produced from the 2 partitions 5 and 11111, while the LT partition 311 is produced by 41 and 2111, and the LT partition 221 is produced by 32, 311, 221; thus row 5 is 2, 2, 3. (For example, the rows of the Ferrers matrix of 311 are (1,1,1), (1,0,0), (1,0,0), with principal diagonal (1,0,0), so that u = 2, v = 1, w = 2; as a partition, 212 is identical to 221.)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..600
- Clark Kimberling and Peter J. C. Moses,Ferrers Matrices and Related Partitions of Integers
Programs
-
Mathematica
ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; lt[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[ferrersMatrix[list]], # > 0 &]; t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[Tally[Map[Reverse[Sort[#]] &, Map[lt, IntegerPartitions[n]]]]]; u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]] z = 10; Table[Flatten[u[n]], {n, 1, z}] Flatten[Table[u[n], {n, 1, z}]] Table[v[n], {n, 1, z}] Flatten[Table[v[n], {n, 1, z}]] (* A238885 *) Table[Length[v[n]], {n, 1, z}] (* A238886 *) (* Peter J. C. Moses, Mar 04 2014 *)
Comments