A238336 The first row of Pascal's triangle having exactly n distinct squarefree numbers, or -1 if no such row exists.
0, 2, 5, 7, 13, 11, 15, 44, 53, 46, 59, 23, 43, 278, 191, 143, 79, 119, 187, 62, 47, 221, 214, 1643, 159, 238, 95, 473, 314, 3583, 671, 474, 958, 3071, 5719, 215, 1439, 7423, 1663, 447, 223, 3695, 4346, 4318, 12983, 319, 35069, 5983, 5471, 8567, 959, 3067
Offset: 1
Links
- A. Granville and O. Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107, [DOI].
Programs
-
Mathematica
nn = 20; t = Table[-1, {nn}]; found = 0; n = -1; While[found < nn, n++; len = Length[Select[Binomial[n, Range[0, n/2]], SquareFreeQ[#] &]]; If[0 < len <= nn && t[[len]] == -1, t[[len]] = n; found++]]; t
Extensions
Extended by T. D. Noe, Mar 07 2014