A238337 Number of distinct squarefree numbers in row n of Pascal's triangle.
1, 1, 2, 2, 2, 3, 3, 4, 2, 1, 3, 6, 2, 5, 6, 7, 1, 3, 1, 4, 4, 5, 6, 12, 2, 2, 4, 1, 2, 6, 3, 6, 1, 2, 4, 4, 1, 4, 7, 6, 2, 6, 7, 13, 8, 4, 10, 21, 1, 1, 1, 2, 3, 9, 2, 3, 1, 3, 5, 11, 4, 13, 20, 4, 1, 2, 3, 4, 4, 8, 6, 9, 1, 4, 9, 2, 3, 7, 9, 17, 1, 1, 2, 3, 2
Offset: 0
Keywords
Examples
a(10)=3 because in row 10 of A007318 we observe the three squarefree numbers 1, 10 and 210.
Links
- T. D. Noe, Table of n, a(n) for n = 0..5000
Programs
-
Maple
A238337 := proc(n) local sqf ; sqf := {} ; for k from 0 to n do b := binomial(n,k) ; if b=1 or numtheory[issqrfree](b) then sqf := sqf union { b} ; end if; end do: nops(sqf) ; end proc: seq(A238337(n),n=0..10) ; # R. J. Mathar, Mar 06 2014
-
Mathematica
Table[Length[Select[Binomial[n, Range[0, n/2]], SquareFreeQ[#] &]], {n, 0, 100}]