cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238342 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with exactly k occurrences of the smallest part, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 3, 4, 0, 1, 0, 8, 3, 4, 0, 1, 0, 11, 10, 5, 5, 0, 1, 0, 20, 18, 14, 5, 6, 0, 1, 0, 34, 35, 24, 21, 6, 7, 0, 1, 0, 59, 60, 59, 35, 27, 7, 8, 0, 1, 0, 96, 121, 108, 85, 49, 35, 8, 9, 0, 1, 0, 167, 217, 213, 175, 125, 63, 44, 9, 10, 0, 1, 0, 282, 391, 419, 366, 258, 176, 80, 54, 10, 11, 0, 1
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Conjecture: Generally, for k > 0 is a(n) ~ n^k * ((1+sqrt(5))/2)^(n-2*k-1) / (5^((k+1)/2) * k!). Holds for all k<=10. - Vaclav Kotesovec, May 02 2014
G.f.: 1 + Sum_{i>0} (-y*(x^i)*(x - 1)^2)/( (x^(i+1) + x - 1)*((x^i)*(x*(y - 1) - y) - x + 1) ). - John Tyler Rascoe, Oct 15 2024
Sum_{k=0..n} k * T(n,k) = A097941(n). - Alois P. Heinz, Oct 15 2024

Examples

			Triangle starts:
00:  1;
01:  0,    1;
02:  0,    1,    1;
03:  0,    3,    0,    1;
04:  0,    3,    4,    0,    1;
05:  0,    8,    3,    4,    0,    1;
06:  0,   11,   10,    5,    5,    0,    1;
07:  0,   20,   18,   14,    5,    6,    0,    1;
08:  0,   34,   35,   24,   21,    6,    7,    0,   1;
09:  0,   59,   60,   59,   35,   27,    7,    8,   0,   1;
10:  0,   96,  121,  108,   85,   49,   35,    8,   9,   0,   1;
11:  0,  167,  217,  213,  175,  125,   63,   44,   9,  10,   0,  1;
12:  0,  282,  391,  419,  366,  258,  176,   80,  54,  10,  11,  0,  1;
13:  0,  475,  709,  808,  730,  579,  371,  236,  99,  65,  11, 12,  0,  1;
14:  0,  800, 1281, 1522, 1481, 1202,  861,  513, 309, 120,  77, 12, 13,  0, 1;
15:  0, 1352, 2283, 2872, 2925, 2512, 1862, 1238, 684, 395, 143, 90, 13, 14, 0, 1;
...
		

Crossrefs

Cf. A238341 (the same for largest part).
Row sums are A011782.
T(2*n,n) gives A232665(n).
Cf. A097941.

Programs

  • Maple
    b:= proc(n, s) option remember;`if`(n=0, 1,
          `if`(n`if`(k=0, `if`(n=0, 1, 0), add((p->add(coeff(p, x, i)*
         binomial(i+k, k), i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)):
    seq(seq(T(n, k), k=0..n), n=0..15);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[nJean-François Alcover, Nov 07 2014, translated from Maple *)
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h=1+sum(i=1,N,(-y*(x^i)*(x-1)^2)/((x^(i+1)+x-1)*((x^i)*(x*(y-1)-y)-x+1)))); for(i=0,N-1, print(Vecrev(polcoef(h,i))))}
    T_xy(15) \\ John Tyler Rascoe, Oct 15 2024