cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238351 Number of compositions p(1)+p(2)+...+p(k) = n such that for no part p(i) = i (compositions without fixed points).

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 11, 22, 42, 82, 161, 316, 624, 1235, 2449, 4864, 9676, 19267, 38399, 76582, 152819, 305085, 609282, 1217140, 2431992, 4860306, 9714696, 19419870, 38824406, 77624110, 155208405, 310352615, 620601689, 1241036325, 2481803050, 4963170896
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Column k=0 of A238349 and of A238350.

Examples

			The a(7) = 22 such compositions are:
01:  [ 2 1 1 1 1 1 ]
02:  [ 2 1 1 1 2 ]
03:  [ 2 1 1 2 1 ]
04:  [ 2 1 1 3 ]
05:  [ 2 1 2 1 1 ]
06:  [ 2 1 2 2 ]
07:  [ 2 1 4 ]
08:  [ 2 3 1 1 ]
09:  [ 2 3 2 ]
10:  [ 2 4 1 ]
11:  [ 2 5 ]
12:  [ 3 1 1 1 1 ]
13:  [ 3 1 1 2 ]
14:  [ 3 1 2 1 ]
15:  [ 3 3 1 ]
16:  [ 3 4 ]
17:  [ 4 1 1 1 ]
18:  [ 4 1 2 ]
19:  [ 4 3 ]
20:  [ 5 1 1 ]
21:  [ 6 1 ]
22:  [ 7 ]
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
           add(`if`(i=j, 0, b(n-j, i+1)), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, b[n-j, i+1]], {j, 1, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * 2^n, where c = A048651/2 = 0.14439404754330121... - Vaclav Kotesovec, May 01 2014