A238351 Number of compositions p(1)+p(2)+...+p(k) = n such that for no part p(i) = i (compositions without fixed points).
1, 0, 1, 2, 3, 6, 11, 22, 42, 82, 161, 316, 624, 1235, 2449, 4864, 9676, 19267, 38399, 76582, 152819, 305085, 609282, 1217140, 2431992, 4860306, 9714696, 19419870, 38824406, 77624110, 155208405, 310352615, 620601689, 1241036325, 2481803050, 4963170896
Offset: 0
Keywords
Examples
The a(7) = 22 such compositions are: 01: [ 2 1 1 1 1 1 ] 02: [ 2 1 1 1 2 ] 03: [ 2 1 1 2 1 ] 04: [ 2 1 1 3 ] 05: [ 2 1 2 1 1 ] 06: [ 2 1 2 2 ] 07: [ 2 1 4 ] 08: [ 2 3 1 1 ] 09: [ 2 3 2 ] 10: [ 2 4 1 ] 11: [ 2 5 ] 12: [ 3 1 1 1 1 ] 13: [ 3 1 1 2 ] 14: [ 3 1 2 1 ] 15: [ 3 3 1 ] 16: [ 3 4 ] 17: [ 4 1 1 1 ] 18: [ 4 1 2 ] 19: [ 4 3 ] 20: [ 5 1 1 ] 21: [ 6 1 ] 22: [ 7 ]
References
- M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
- M. Archibald, A. Blecher, and A. Knopfmacher, Fixed Points in Compositions and Words, J. Int. Seq., Vol. 23 (2020), Article 20.11.1.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(i=j, 0, b(n-j, i+1)), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[i == j, 0, b[n-j, i+1]], {j, 1, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
Formula
a(n) ~ c * 2^n, where c = A048651/2 = 0.14439404754330121... - Vaclav Kotesovec, May 01 2014
Comments