cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A088902 Numbers n such that n = product (p_k)^(c_k) and set of its (c_k k's)'s is a self-conjugate partition, where p_k is k-th prime and c_k > 0.

Original entry on oeis.org

1, 2, 6, 9, 20, 30, 56, 75, 84, 125, 176, 210, 264, 350, 416, 441, 624, 660, 735, 1088, 1100, 1386, 1560, 1632, 1715, 2310, 2401, 2432, 2600, 3267, 3276, 3648, 4080, 5390, 5445, 5460, 5888, 6800, 7546, 7722, 8568, 8832, 9120, 12705, 12740, 12870, 13689
Offset: 1

Views

Author

Naohiro Nomoto, Nov 28 2003

Keywords

Comments

The Heinz numbers of the self-conjugate partitions. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] to be Product(p_j-th prime, j=1..r) (a concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 1, 4] we get 2*2*2*7 = 56. It is in the sequence since [1,1,1,4] is self-conjugate. - Emeric Deutsch, Jun 05 2015

Examples

			20 is in the sequence because 20 = 2^2 * 5^1 = (p_1)^2 *(p_3)^1, (two 1's, one 3's) = (1,1,3) is a self-conjugate partition of 5.
From _Gus Wiseman_, Jun 28 2022: (Start)
The terms together with their prime indices begin:
    1: ()
    2: (1)
    6: (2,1)
    9: (2,2)
   20: (3,1,1)
   30: (3,2,1)
   56: (4,1,1,1)
   75: (3,3,2)
   84: (4,2,1,1)
  125: (3,3,3)
  176: (5,1,1,1,1)
  210: (4,3,2,1)
  264: (5,2,1,1,1)
(End)
		

Crossrefs

Fixed points of A122111.
A002110 (primorial numbers) is a subsequence.
After a(1) and a(2), a subsequence of A241913.
These partitions are counted by A000700.
The same count comes from A258116.
The complement is A352486, counted by A330644.
These are the positions of zeros in A352491.
A000041 counts integer partitions, strict A000009.
A325039 counts partitions w/ product = conjugate product, ranked by A325040.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382.
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition.
- A296150 = parts of partition, reverse A112798, conjugate A321649.
- A352487 = less than conjugate, counted by A000701.
- A352488 = greater than or equal to conjugate, counted by A046682.
- A352489 = less than or equal to conjugate, counted by A046682.
- A352490 = greater than conjugate, counted by A000701.

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0: for i to nops(P) do if j <= P[i] then c := c+1 else end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: SC := {}: for i to 14000 do if c(i) = i then SC := `union`(SC, {i}) else end if end do: SC; # Emeric Deutsch, May 09 2015
  • Mathematica
    Select[Range[14000], Function[n, n == If[n == 1, 1, Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@ Length@ l, m = Min@ l}, Length@ Union@ l]] &@ Catenate[ConstantArray[PrimePi@ #1, #2] & @@@ FactorInteger@ n]]]] (* Michael De Vlieger, Aug 27 2016, after JungHwan Min at A122111 *)

Extensions

More terms from David Wasserman, Aug 26 2005

A001522 Number of n-stacks with strictly receding walls, or the number of Type A partitions of n in the sense of Auluck (1951).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 62, 82, 107, 139, 179, 230, 293, 372, 470, 591, 740, 924, 1148, 1422, 1756, 2161, 2651, 3244, 3957, 4815, 5844, 7075, 8545, 10299, 12383, 14859, 17794, 21267, 25368, 30207, 35902, 42600, 50462, 59678, 70465, 83079, 97800, 114967, 134956, 158205, 185209, 216546, 252859
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n with positive crank (n>=2), cf. A064391. - Vladeta Jovovic, Sep 30 2001
Number of smooth weakly unimodal compositions of n into positive parts such that the first and last part are 1 (smooth means that successive parts differ by at most one), see example. Dropping the requirement for unimodality gives A186085. - Joerg Arndt, Dec 09 2012
Number of weakly unimodal compositions of n where the maximal part m appears at least m times, see example. - Joerg Arndt, Jun 11 2013
Also weakly unimodal compositions of n with first part 1, maximal up-step 1, and no consecutive up-steps; see example. The smooth weakly unimodal compositions are recovered by shifting all rows above the bottom row to the left by one position with respect to the next lower row. - Joerg Arndt, Mar 30 2014
It would seem from Stanley that he regards a(0)=0 for this sequence and A001523. - Michael Somos, Feb 22 2015
From Gus Wiseman, Mar 30 2021: (Start)
Also the number of odd-length compositions of n with alternating parts strictly decreasing. These are finite odd-length sequences q of positive integers summing to n such that q(i) > q(i+2) for all possible i. The even-length version is A064428. For example, the a(1) = 1 through a(9) = 14 compositions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (221) (231) (241) (251) (261)
(311) (312) (322) (332) (342)
(321) (331) (341) (351)
(411) (412) (413) (423)
(421) (422) (432)
(511) (431) (441)
(512) (513)
(521) (522)
(611) (531)
(612)
(621)
(711)
(32211)
(End)
In the Ferrers diagram of a partition x of n, count the dots in each diagonal parallel to the main diagonal (starting at the top-right, say). The result diag(x) is a smooth weakly unimodal composition of n into positive parts such that the first and last part are 1. For example, diag(5541) = 11233221. The function diag is many-to-one; the size of its codomain as a set is a(n). If diag(x) = diag(y), each hook of x can be slid by the same amount past the main diagonal to get y. For example, diag(5541) = diag(44331). - George Beck, Sep 26 2021
From Gus Wiseman, May 23 2022: (Start)
Conjecture: Also the number of integer partitions y of n with a fixed point y(i) = i. These partitions are ranked by A352827. The conjecture is stated at A238395, but Resta tells me he may not have had a proof. The a(1) = 1 through a(8) = 10 partitions are:
(1) (11) (111) (22) (32) (42) (52) (62)
(1111) (221) (222) (322) (422)
(11111) (321) (421) (521)
(2211) (2221) (2222)
(111111) (3211) (3221)
(22111) (4211)
(1111111) (22211)
(32111)
(221111)
(11111111)
Note that these are not the same partitions (compare A352827 to A352874), only the same count (apparently).
(End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022

Examples

			For a(6)=5 we have the following stacks:
.x... ..x.. ...x. .xx.
xxxxx xxxxx xxxxx xxxx xxxxxx
.
From _Joerg Arndt_, Dec 09 2012: (Start)
There are a(9) = 14 smooth weakly unimodal compositions of 9:
01:   [ 1 1 1 1 1 1 1 1 1 ]
02:   [ 1 1 1 1 1 1 2 1 ]
03:   [ 1 1 1 1 1 2 1 1 ]
04:   [ 1 1 1 1 2 1 1 1 ]
05:   [ 1 1 1 1 2 2 1 ]
06:   [ 1 1 1 2 1 1 1 1 ]
07:   [ 1 1 1 2 2 1 1 ]
08:   [ 1 1 2 1 1 1 1 1 ]
09:   [ 1 1 2 2 1 1 1 ]
10:   [ 1 1 2 2 2 1 ]
11:   [ 1 2 1 1 1 1 1 1 ]
12:   [ 1 2 2 1 1 1 1 ]
13:   [ 1 2 2 2 1 1 ]
14:   [ 1 2 3 2 1 ]
(End)
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(9) = 14 weakly unimodal compositions of 9 where the maximal part m appears at least m times:
01:  [ 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 ]
03:  [ 1 1 1 1 2 2 1 ]
04:  [ 1 1 1 2 2 1 1 ]
05:  [ 1 1 1 2 2 2 ]
06:  [ 1 1 2 2 1 1 1 ]
07:  [ 1 1 2 2 2 1 ]
08:  [ 1 2 2 1 1 1 1 ]
09:  [ 1 2 2 2 1 1 ]
10:  [ 1 2 2 2 2 ]
11:  [ 2 2 1 1 1 1 1 ]
12:  [ 2 2 2 1 1 1 ]
13:  [ 2 2 2 2 1 ]
14:  [ 3 3 3 ]
(End)
From _Joerg Arndt_, Mar 30 2014: (Start)
There are a(9) = 14 compositions of 9 with first part 1, maximal up-step 1, and no consecutive up-steps:
01:  [ 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 1 2 1 1 ]
05:  [ 1 1 1 1 1 2 2 ]
06:  [ 1 1 1 1 2 1 1 1 ]
07:  [ 1 1 1 1 2 2 1 ]
08:  [ 1 1 1 2 1 1 1 1 ]
09:  [ 1 1 1 2 2 1 1 ]
10:  [ 1 1 1 2 2 2 ]
11:  [ 1 1 2 1 1 1 1 1 ]
12:  [ 1 1 2 2 1 1 1 ]
13:  [ 1 1 2 2 2 1 ]
14:  [ 1 1 2 2 3 ]
(End)
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 14*x^9 + ...
		

References

  • G. E. Andrews, The reasonable and unreasonable effectiveness of number theory in statistical mechanics, pp. 21-34 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.

Crossrefs

A version for permutations is A002467, complement A000166.
The case of zero crank is A064410, ranked by A342192.
The case of nonnegative crank is A064428, ranked by A352873.
A strict version is A352829, complement A352828.
Conjectured to be column k = 1 of A352833.
These partitions (positive crank) are ranked by A352874.
A000700 counts self-conjugate partitions, ranked by A088902.
A064391 counts partitions by crank.
A115720 and A115994 count partitions by their Durfee square.
A257989 gives the crank of the partition with Heinz number n.
Counting compositions: A003242, A114921, A238351, A342527, A342528, A342532.
Fixed points of reversed partitions: A238352, A238394, A238395, A352822, A352830, A352872.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n<=0, `if`(i=1, 1, 0),
          `if`(n<0 or i<1, 0, b(n-i, i, t)+b(n-(i-1), i-1, false)+
          `if`(t, b(n-(i+1), i+1, t), 0)))
        end:
    a:= n-> b(n-1, 1, true):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
    # second Maple program:
    A001522 := proc(n)
        local r,a;
        a := 0 ;
        if n = 0 then
            return 1 ;
        end if;
        for r from 1 do
            if r*(r+1) > 2*n then
                return a;
            else
                a := a-(-1)^r*combinat[numbpart](n-r*(r+1)/2) ;
            end if;
        end do:
    end proc: # R. J. Mathar, Mar 07 2015
  • Mathematica
    max = 50; f[x_] := 1 + Sum[-(-1)^k*x^(k*(k+1)/2), {k, 1, max}] / Product[(1-x^k), {k, 1, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *)
    b[n_, i_, t_] := b[n, i, t] = If[n <= 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, b[n-i, i, t] + b[n - (i-1), i-1, False] + If[t, b[n - (i+1), i+1, t], 0]]]; a[n_] := b[n-1, 1, True]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 01 2015, after Alois P. Heinz *)
    Flatten[{1, Table[Sum[(-1)^(j-1)*PartitionsP[n-j*((j+1)/2)], {j, 1, Floor[(Sqrt[8*n + 1] - 1)/2]}], {n, 1, 60}]}] (* Vaclav Kotesovec, Sep 26 2016 *)
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[If[n==0,1,Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],OddQ@*Length],ici]]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1+8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Jul 22 2003 */
    
  • PARI
    N=66; q='q+O('q^N);
    Vec( 1 + sum(n=1, N, q^(n^2)/(prod(k=1,n-1,1-q^k)^2*(1-q^n)) ) ) \\ Joerg Arndt, Dec 09 2012
    
  • Sage
    def A001522(n):
        if n < 4: return 1
        return (number_of_partitions(n) - [p.crank() for p in Partitions(n)].count(0))/2
    [A001522(n) for n in range(30)]  # Peter Luschny, Sep 15 2014

Formula

a(n) = (A000041(n) - A064410(n)) / 2 for n>=2.
G.f.: 1 + ( Sum_{k>=1} -(-1)^k * x^(k*(k+1)/2) ) / ( Product_{k>=1} 1-x^k ).
G.f.: 1 + ( Sum_{n>=1} q^(n^2) / ( ( Product_{k=1..n-1} 1-q^k )^2 * (1-q^n) ) ). - Joerg Arndt, Dec 09 2012
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n) [Auluck, 1951]. - Vaclav Kotesovec, Sep 26 2016
a(n) = A000041(n) - A064428(n). - Gus Wiseman, Mar 30 2021
a(n) = A064428(n) - A064410(n). - Gus Wiseman, May 23 2022

Extensions

a(0) changed from 0 to 1 by Joerg Arndt, Mar 30 2014
Edited definition. - N. J. A. Sloane, Mar 31 2021

A064428 Number of partitions of n with nonnegative crank.

Original entry on oeis.org

1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
Offset: 0

Views

Author

Vladeta Jovovic, Sep 30 2001

Keywords

Comments

For a partition p, let l(p) = largest part of p, w(p) = number of 1's in p, m(p) = number of parts of p larger than w(p). The crank of p is given by l(p) if w(p) = 0, otherwise m(p)-w(p).
From Gus Wiseman, Mar 30 2021 and May 21 2022: (Start)
Also the number of even-length compositions of n with alternating parts strictly decreasing, or properly 2-colored partitions (proper = no equal parts of the same color) with the same number of parts of each color, or ordered pairs of strict partitions of the same length with total n. The odd-length case is A001522, and there are a total of A000041 compositions with alternating parts strictly decreasing (see A342528 for a bijective proof). The a(2) = 1 through a(7) = 8 ordered pairs of strict partitions of the same length are:
(1)(1) (1)(2) (1)(3) (1)(4) (1)(5) (1)(6)
(2)(1) (2)(2) (2)(3) (2)(4) (2)(5)
(3)(1) (3)(2) (3)(3) (3)(4)
(4)(1) (4)(2) (4)(3)
(5)(1) (5)(2)
(21)(21) (6)(1)
(21)(31)
(31)(21)
Conjecture: Also the number of integer partitions y of n without a fixed point y(i) = i, ranked by A352826. This is stated at A238394, but Resta tells me he may not have had a proof. The a(2) = 1 through a(7) = 8 partitions without a fixed point are:
(2) (3) (4) (5) (6) (7)
(21) (31) (41) (33) (43)
(211) (311) (51) (61)
(2111) (411) (331)
(3111) (511)
(21111) (4111)
(31111)
(211111)
The version for permutations is A000166, complement A002467.
The version for compositions is A238351.
This is column k = 0 of A352833.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872. (End)
The above conjecture is true. See Section 4 of the Blecher-Knopfmacher paper in the Links section. - Jeremy Lovejoy, Sep 26 2022

Examples

			G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - _Michael Somos_, Jan 15 2018
From _Gus Wiseman_, May 21 2022: (Start)
The a(0) = 1 through a(8) = 12 partitions with nonnegative crank:
  ()  .  (2)  (3)   (4)   (5)    (6)    (7)     (8)
              (21)  (22)  (32)   (33)   (43)    (44)
                    (31)  (41)   (42)   (52)    (53)
                          (221)  (51)   (61)    (62)
                                 (222)  (322)   (71)
                                 (321)  (331)   (332)
                                        (421)   (422)
                                        (2221)  (431)
                                                (521)
                                                (2222)
                                                (3221)
                                                (3311)
(End)
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
  • G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.

Crossrefs

These are the row-sums of the right (or left) half of A064391, inclusive.
The case of crank 0 is A064410, ranked by A342192.
The strict case is A352828.
These partitions are ranked by A352873.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A001522 counts partitions with positive crank, ranked by A352874.
A034008 counts even-length compositions.
A115720 and A115994 count partitions by their Durfee square.
A224958 counts compositions w/ alternating parts unequal (even: A342532).
A257989 gives the crank of the partition with Heinz number n.
A342527 counts compositions w/ alternating parts equal (even: A065608).
A342528 = compositions w/ alternating parts weakly decr. (even: A114921).

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[  x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *)
    ck[y_]:=With[{w=Count[y,1]},If[w==0,If[y=={},0,Max@@y],Count[y,?(#>w&)]-w]];Table[Length[Select[IntegerPartitions[n],ck[#]>=0&]],{n,0,30}] (* _Gus Wiseman, Mar 30 2021 *)
    ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length],ici]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */

Formula

a(n) = (A000041(n) + A064410(n)) / 2, n>1. - Michael Somos, Jul 28 2003
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1-x^k). - Michael Somos, Jul 28 2003
G.f.: Sum_{i>=0} x^(i*(i+1)) / (Product_{j=1..i} 1-x^j )^2. - Jon Perry, Jul 18 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Sep 26 2016
G.f.: (Sum_{i>=0} x^i / (Product_{j=1..i} 1-x^j)^2 ) * (Product_{k>0} 1-x^k). - Li Han, May 23 2020
a(n) = A000041(n) - A001522(n). - Gus Wiseman, Mar 30 2021
a(n) = A064410(n) + A001522(n). - Gus Wiseman, May 21 2022

A238349 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n with k parts p at position p (fixed points), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 0, 0, 6, 7, 3, 0, 0, 0, 11, 16, 4, 1, 0, 0, 0, 22, 29, 12, 1, 0, 0, 0, 0, 42, 60, 23, 3, 0, 0, 0, 0, 0, 82, 120, 47, 7, 0, 0, 0, 0, 0, 0, 161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0, 316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0, 624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0, 1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

T(n*(n+3)/2,n) = A227682(n).
From Vaclav Kotesovec, Sep 07 2014: (Start)
In general, column k is asymptotic to c(k) * 2^n. The constants c(k) numerically:
c(0) = 0.144394047543301210639449860964615390044455952420342... = A048651/2
c(1) = 0.231997216225445223894202367545783700531838988546098... = c(0)*A065442
c(2) = 0.104261929557371534733906196116707679501974368826074...
c(3) = 0.017956317806894073430249112172514186063327165575720...
c(4) = 0.001343254222922697613125145839110293324517874530073...
c(5) = 0.000046459767012163920051487037952792359225887287888...
c(6) = 0.000000768651747857094917953943327540619110335556499...
c(7) = 0.000000006200599904985793344094393321042983316604040...
c(8) = 0.000000000024656652167851516076173236693314090168122...
c(9) = 0.000000000000048633746319332356416193899916110113745...
c(10)= 0.000000000000000047750743608910618576944191079881479...
c(20)= 1.05217230403079700467566...*10^(-63)
For big k is c(k) ~ m * 2^(-k*(k+1)/2), where m = 1/(4*c(0)) = 1/(2*A048651) = 1.7313733097275318...
(End)

Examples

			Triangle starts:
00:  1,
01:  0, 1,
02:  1, 1, 0,
03:  2, 1, 1, 0,
04:  3, 4, 1, 0, 0,
05:  6, 7, 3, 0, 0, 0,
06:  11, 16, 4, 1, 0, 0, 0,
07:  22, 29, 12, 1, 0, 0, 0, 0,
08:  42, 60, 23, 3, 0, 0, 0, 0, 0,
09:  82, 120, 47, 7, 0, 0, 0, 0, 0, 0,
10:  161, 238, 100, 12, 1, 0, 0, 0, 0, 0, 0,
11:  316, 479, 198, 30, 1, 0, 0, 0, 0, 0, 0, 0,
12:  624, 956, 404, 61, 3, 0, 0, 0, 0, 0, 0, 0, 0,
13:  1235, 1910, 818, 126, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0,
14:  2449, 3817, 1652, 258, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
15:  4864, 7633, 3319, 537, 30, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
From _Gus Wiseman_, Apr 03 2022: (Start)
Row n = 5 counts the following compositions (empty columns indicated by dots):
  (5)     (14)     (113)   .  .  .
  (23)    (32)     (122)
  (41)    (131)    (1211)
  (212)   (221)
  (311)   (1112)
  (2111)  (1121)
          (11111)
(End)
		

References

  • M. Archibald, A. Blecher and A. Knopfmacher, Fixed points in compositions and words, accepted by the Journal of Integer Sequences.

Crossrefs

Row sums are A011782.
The version for permutations is A008290.
The version with all zeros removed is A238350.
The version for reversed partitions is A238352.
The corresponding rank statistic is A352512, nonfixed A352513.
The version for nonfixed points is A352523, A352520 (k=1).
Below: comps = compositions, first = column k=0, stat = rank statistic.
- A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
- A352522 counts comps by weak nonexcedances, first A238874, stat A352515.
- A352524 counts comps by strong excedances, first A008930, stat A352516.
- A352525 counts comps by weak excedances, A177510 (k=1), stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, expand(
           add(b(n-j, i+1)*`if`(i=j, x, 1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Expand[Sum[b[n-j, i+1]*If[i == j, x, 1], {j, 1, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, after Alois P. Heinz *)
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]==k&]],{n,0,9},{k,0,n}] (* Gus Wiseman, Apr 03 2022 *)

A352523 Number of integer compositions of n with exactly k nonfixed points (parts not on the diagonal).

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 1, 2, 0, 0, 4, 2, 2, 0, 0, 5, 5, 4, 2, 0, 1, 3, 12, 8, 6, 2, 0, 0, 7, 14, 19, 14, 8, 2, 0, 0, 8, 21, 33, 32, 22, 10, 2, 0, 0, 9, 30, 54, 63, 54, 32, 12, 2, 0, 1, 6, 47, 80, 116, 116, 86, 44, 14, 2, 0, 0, 11, 53, 129, 194, 229, 202, 130, 58, 16, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			Triangle begins:
   1
   1   0
   0   2   0
   1   1   2   0
   0   4   2   2   0
   0   5   5   4   2   0
   1   3  12   8   6   2   0
   0   7  14  19  14   8   2   0
   0   8  21  33  32  22  10   2   0
   0   9  30  54  63  54  32  12   2   0
   1   6  47  80 116 116  86  44  14   2   0
   ...
For example, row n = 6 counts the following compositions (empty column indicated by dot):
  (123)  (6)   (24)    (231)    (2112)   (21111)    .
         (15)  (33)    (312)    (2121)   (111111)
         (42)  (51)    (411)    (3111)
               (114)   (1113)   (11112)
               (132)   (1122)   (11121)
               (141)   (1311)   (11211)
               (213)   (2211)
               (222)   (12111)
               (321)
               (1131)
               (1212)
               (1221)
		

Crossrefs

Column k = 0 is A010054.
Row sums are A011782.
The version for permutations is A098825.
The corresponding rank statistic is A352513.
Column k = 1 is A352520.
A238349 and A238350 count comps by fixed points, first col A238351, rank stat A352512.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          add(`if`(i=j, 1, x)*b(n-j, i+1), j=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 19 2025
  • Mathematica
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pnq[#]==k&]],{n,0,9},{k,0,n}]
  • PARI
    T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= sum(i=0, N, prod(j=1, i, y*(x/(1-x)-x^j)+x^j))); vector(N, n, my(r=Vecrev(polcoeff(h, n-1))); if(n<2, r, concat(r,[0])))}
    T_xy(10) \\ John Tyler Rascoe, Mar 21 2025

Formula

G.f.: Sum_{i>=0} Product_{j=1..i} y*(x/(1-x) - x^j) + x^j. - John Tyler Rascoe, Mar 19 2025

A177510 Number of compositions (p0, p1, p2, ...) of n with pi - p0 <= i and pi >= p0.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 25, 46, 87, 167, 324, 634, 1248, 2466, 4887, 9706, 19308, 38455, 76659, 152925, 305232, 609488, 1217429, 2432399, 4860881, 9715511, 19421029, 38826059, 77626471, 155211785, 310357462, 620608652, 1241046343, 2481817484, 4963191718, 9925669171, 19850186856, 39698516655, 79394037319
Offset: 0

Views

Author

Mats Granvik, Dec 11 2010

Keywords

Comments

a(0)=1, otherwise row sums of A179748.
For n>=1 cumulative sums of A008930.
a(n) is proportional to A048651*A000079. The error (a(n)-A048651*A000079) divided by sequence A186425 tends to the golden ratio A001622. This can be seen when using about 1000 decimals of the constant A048651 = 0.2887880950866024212... - [Mats Granvik, Jan 01 2015]
From Gus Wiseman, Mar 31 2022: (Start)
Also the number of integer compositions of n with exactly one part on or above the diagonal. For example, the a(1) = 1 through a(5) = 8 compositions are:
(1) (2) (3) (4) (5)
(11) (21) (31) (41)
(111) (112) (212)
(211) (311)
(1111) (1112)
(1121)
(2111)
(11111)
(End)

Examples

			From _Joerg Arndt_, Mar 24 2014: (Start)
The a(7) = 25 such compositions are:
01:  [ 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 ]
03:  [ 1 1 1 1 2 1 ]
04:  [ 1 1 1 1 3 ]
05:  [ 1 1 1 2 1 1 ]
06:  [ 1 1 1 2 2 ]
07:  [ 1 1 1 3 1 ]
08:  [ 1 1 1 4 ]
09:  [ 1 1 2 1 1 1 ]
10:  [ 1 1 2 1 2 ]
11:  [ 1 1 2 2 1 ]
12:  [ 1 1 2 3 ]
13:  [ 1 1 3 1 1 ]
14:  [ 1 1 3 2 ]
15:  [ 1 2 1 1 1 1 ]
16:  [ 1 2 1 1 2 ]
17:  [ 1 2 1 2 1 ]
18:  [ 1 2 1 3 ]
19:  [ 1 2 2 1 1 ]
20:  [ 1 2 2 2 ]
21:  [ 1 2 3 1 ]
22:  [ 2 2 3 ]
23:  [ 2 3 2 ]
24:  [ 3 4 ]
25:  [ 7 ]
(End)
		

Crossrefs

Cf. A238859 (compositions with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
The version for partitions is A001477, strong A002620.
The version for permutations is A057427, strong A000295.
The opposite version is A238874, first column of A352522.
The version for fixed points is A240736, nonfixed A352520.
The strong version is A351983, column k=1 of A352524.
This is column k = 1 of A352525.
A238349 counts compositions by fixed points, first col A238351.
A352517 counts weak excedances of standard compositions.

Programs

  • Maple
    A179748 := proc(n,k) option remember; if k= 1 then 1; elif k> n then 0 ; else add( procname(n-i,k-1),i=1..k-1) ; end if; end proc:
    A177510 := proc(n) add(A179748(n,k),k=1..n) ;end proc:
    seq(A177510(n),n=1..20) ; # R. J. Mathar, Dec 14 2010
  • Mathematica
    Clear[t, nn]; nn = 39; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* Mats Granvik, Jan 01 2015 *)
    pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pdw[#]==1&]],{n,0,10}] (* Gus Wiseman, Mar 31 2022 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1 + q/(1-q) * sum(n=0, N, q^n * prod(k=1, n, (1-q^k)/(1-q) ) ) ) \\ Joerg Arndt, Mar 24 2014
  • Sage
    @CachedFunction
    def T(n, k): # A179748
        if n == 0:  return int(k==0);
        if k == 1:  return int(n>=1);
        return sum( T(n-i, k-1) for i in [1..k-1] );
    # to display triangle A179748 including column zero = [1,0,0,0,...]:
    #for n in [0..10]: print([ T(n,k) for k in [0..n] ])
    def a(n): return sum( T(n,k) for k in [0..n] )
    print([a(n) for n in [0..66]])
    # Joerg Arndt, Mar 24 2014
    

Formula

G.f.: 1 + q/(1-q) * sum(n>=0, q^n * prod(k=1..n, (1-q^k)/(1-q) ) ). [Joerg Arndt, Mar 24 2014]

Extensions

New name and a(0) = 1 prepended, Joerg Arndt, Mar 24 2014

A352512 Number of fixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 1, 0, 1, 2, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Mar 26 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A fixed point of composition c is an index i such that c_i = i.

Examples

			The 169th composition in standard order is (2,2,3,1), with fixed points {2,3}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A008290, unfixed A098825.
The triangular version is A238349, first column A238351.
Unfixed points are counted by A352513, triangle A352523, first A352520.
A011782 counts compositions.
A088902 gives the fixed points of A122111, counted by A000700.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[pq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).

A352525 Irregular triangle read by rows where T(n,k) is the number of integer compositions of n with k weak excedances (parts on or above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 3, 8, 8, 14, 17, 1, 25, 35, 4, 46, 70, 12, 87, 137, 32, 167, 268, 76, 1, 324, 525, 170, 5, 634, 1030, 367, 17, 1248, 2026, 773, 49, 2466, 3999, 1598, 129, 4887, 7914, 3267, 315, 1, 9706, 15695, 6631, 730, 6, 19308, 31181, 13393, 1631, 23
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
     1
     1
     2
     3     1
     5     3
     8     8
    14    17     1
    25    35     4
    46    70    12
    87   137    32
   167   268    76     1
   324   525   170     5
For example, row n = 6 counts the following compositions:
  (6)       (15)     (123)
  (51)      (24)
  (312)     (33)
  (411)     (42)
  (1113)    (114)
  (1122)    (132)
  (2112)    (141)
  (2121)    (213)
  (3111)    (222)
  (11112)   (231)
  (11121)   (321)
  (11211)   (1131)
  (21111)   (1212)
  (111111)  (1221)
            (1311)
            (2211)
            (12111)
		

Crossrefs

Row sums are A011782.
The version for partitions is A115994.
The version for permutations is A123125, strong A173018.
Column k = 1 is A177510.
The corresponding rank statistic is A352517.
The strong opposite is A352521, first col A219282, rank statistic A352514.
The opposite version is A352522, first col A238874, rank statistic A352515.
The strong version is A352524, first column A008930, rank statistic A352516.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352489 lists the weak excedance set of A122111.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]];
    DeleteCases[Table[Length[Select[Join@@ Permutations/@IntegerPartitions[n],pdw[#]==k&]],{n,0,10},{k,0,n}],0,{2}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k<=i,x,1)*v[j-i])); r+=v); r[1]=x; [Vecrev(p) | p<-r/x]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023

A352513 Number of nonfixed points in the n-th composition in standard order.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 0, 2, 1, 2, 1, 3, 1, 1, 2, 3, 1, 2, 1, 3, 2, 2, 3, 4, 1, 2, 1, 2, 1, 3, 3, 4, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 1, 2, 2, 3, 0, 2, 2, 3, 2, 2, 3, 4, 3, 4, 4, 5, 1, 2, 1, 3, 2, 2, 3, 4, 2, 3, 2, 3, 2, 4, 4, 5, 2, 3, 3, 4, 1, 3, 3
Offset: 0

Views

Author

Gus Wiseman, Mar 27 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See also A000120, A059893, A070939, A114994, A225620.
A nonfixed point in a composition c is an index i such that c_i != i.

Examples

			The 169th composition in standard order is (2,2,3,1), with nonfixed points {1,4}, so a(169) = 2.
		

Crossrefs

The version counting permutations is A098825, fixed A008290.
Fixed points are counted by A352512, triangle A238349, first A238351.
The triangular version is A352523, first nontrivial column A352520.
A011782 counts compositions.
A352486 gives the nonfixed points of A122111, counted by A330644.
A352521 counts comps by strong nonexcedances, first A219282, stat A352514.
A352522 counts comps by weak nonexcedances, first col A238874, stat A352515.
A352524 counts comps by strong excedances, first col A008930, stat A352516.
A352525 counts comps by weak excedances, first col A177510, stat A352517.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    pnq[y_]:=Length[Select[Range[Length[y]],#!=y[[#]]&]];
    Table[pnq[stc[n]],{n,0,100}]

Formula

A000120(n) = A352512(n) + A352513(n).

A352522 Triangle read by rows where T(n,k) is the number of integer compositions of n with k weak nonexcedances (parts on or below the diagonal).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 3, 4, 3, 3, 1, 3, 4, 8, 6, 6, 4, 1, 4, 7, 12, 13, 12, 10, 5, 1, 5, 13, 16, 26, 24, 22, 15, 6, 1, 7, 19, 27, 43, 48, 46, 37, 21, 7, 1, 10, 26, 47, 68, 90, 93, 83, 58, 28, 8, 1, 14, 36, 77, 109, 159, 180, 176, 141
Offset: 0

Views

Author

Gus Wiseman, Mar 22 2022

Keywords

Examples

			Triangle begins:
   1
   0   1
   1   0   1
   1   1   1   1
   1   3   1   2   1
   2   3   4   3   3   1
   3   4   8   6   6   4   1
   4   7  12  13  12  10   5   1
   5  13  16  26  24  22  15   6   1
   7  19  27  43  48  46  37  21   7   1
  10  26  47  68  90  93  83  58  28   8   1
For example, row n = 6 counts the following compositions:
  (6)   (15)   (114)  (123)   (1113)   (11112)  (111111)
  (24)  (42)   (132)  (1311)  (1122)   (11121)
  (33)  (51)   (141)  (2112)  (1131)   (11211)
        (231)  (213)  (2121)  (1212)   (12111)
               (222)  (2211)  (1221)
               (312)  (3111)  (21111)
               (321)
               (411)
		

Crossrefs

Row sums are A011782.
The strong version for partitions is A114088.
The opposite version for partitions is A115994.
The version for permutations is A123125, strong A173018.
Column k = 0 is A238874.
The corresponding rank statistic is A352515.
The strong version is A352521, first column A219282, rank statistic A352514.
The strong opposite is A352524, first col A008930, rank statistic A352516.
The opposite version is A352525, first col A177510, rank statistic A352517.
A000041 counts integer partitions, strict A000009.
A008292 is the triangle of Eulerian numbers (version without zeros).
A238349 counts comps by fixed points, first col A238351, rank stat A352512.
A352488 lists the weak nonexcedance set of A122111.
A352523 counts comps by unfixed points, first A352520, rank stat A352513.

Programs

  • Mathematica
    pw[y_]:=Length[Select[Range[Length[y]],#>=y[[#]]&]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pw[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    T(n)={my(v=vector(n+1, i, i==1), r=v); for(k=1, n, v=vector(#v, j, sum(i=1, j-1, if(k>=i,x,1)*v[j-i])); r+=v); [Vecrev(p) | p<-r]}
    { my(A=T(10)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Jan 19 2023
Showing 1-10 of 27 results. Next