A238352 Irregular triangle T(n,k) read by rows: T(n,k) is the number of partitions p(1), p(2), ..., p(m) of n (as weakly ascending list of parts) with k parts p at position p (fixed points), n>=0, 0<=k<= (column index of last nonzero term in row n).
1, 0, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 2, 3, 7, 0, 1, 3, 7, 5, 4, 14, 4, 5, 19, 3, 3, 8, 24, 9, 0, 1, 9, 32, 11, 4, 12, 46, 15, 4, 13, 60, 21, 7, 17, 85, 28, 1, 4, 22, 109, 28, 16, 0, 1, 28, 140, 51, 7, 5, 34, 179, 57, 26, 1, 42, 239, 74, 25, 5, 48, 300, 107, 24
Offset: 0
Examples
Triangle starts: 00: 1; 01: 0, 1; 02: 1, 1; 03: 1, 1, 1; 04: 1, 4; 05: 2, 3, 2; 06: 3, 7, 0, 1; 07: 3, 7, 5; 08: 4, 14, 4; 09: 5, 19, 3, 3; 10: 8, 24, 9, 0, 1; 11: 9, 32, 11, 4; 12: 12, 46, 15, 4; 13: 13, 60, 21, 7; 14: 17, 85, 28, 1, 4; 15: 22, 109, 28, 16, 0, 1; 16: 28, 140, 51, 7, 5; 17: 34, 179, 57, 26, 1; 18: 42, 239, 74, 25, 5; 19: 48, 300, 107, 24, 11; 20: 59, 397, 122, 43, 1, 5; 21: 71, 495, 167, 37, 21, 0, 1; ... The 11 partitions of 6 together with their number of fixed points are: 01: [ 1 1 1 1 1 1 ] 1 02: [ 1 1 1 1 2 ] 1 03: [ 1 1 1 3 ] 1 04: [ 1 1 2 2 ] 1 05: [ 1 1 4 ] 1 06: [ 1 2 3 ] 3 07: [ 1 5 ] 1 08: [ 2 2 2 ] 1 09: [ 2 4 ] 0 10: [ 3 3 ] 0 11: [ 6 ] 0 There are 3 partitions with no fixed points, 7 with one, none with 2, and one with 3, giving row 6.
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..500, flattened
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, expand(b(n, i-1) +`if`(i>n, 0, (p-> add((c->c*x^j* `if`(j=i, z, 1))(coeff(p, x, j)), j=0..degree(p,x))) (x*b(n-i, i)))))) end: T:= n-> (p->seq((q->add(coeff(q, x, j), j=0..degree(q, x))) (coeff(p, z, i)), i=0..degree(p, z)))(b(n$2)): seq(T(n), n=0..25);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[b[n, i-1] + If[i>n, 0, Function[{p}, Sum[Function[{c}, c*x^j* If[j == i, z, 1]][Coefficient[p, x, j]], {j, 0, Exponent[p, x]}]] [x*b[n-i, i]]]]]]; T[n_] := Function[{p}, Table[ Function[{q}, Sum[Coefficient[q, x, j], {j, 0, Exponent[q, x]}]][Coefficient[p, z, i]], {i, 0, Exponent[p, z]}]][b[n, n]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Maple *)
Comments