cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A152719 Triangle read by rows: T(n,k) = A000129( 1 + min(k,n-k) ), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 2, 5, 5, 2, 1, 1, 2, 5, 12, 5, 2, 1, 1, 2, 5, 12, 12, 5, 2, 1, 1, 2, 5, 12, 29, 12, 5, 2, 1, 1, 2, 5, 12, 29, 29, 12, 5, 2, 1, 1, 2, 5, 12, 29, 70, 29, 12, 5, 2, 1, 1, 2, 5, 12, 29, 70, 70, 29, 12, 5, 2, 1, 1, 2, 5, 12, 29, 70, 169, 70, 29, 12, 5, 2, 1
Offset: 0

Views

Author

Roger L. Bagula, Dec 11 2008

Keywords

Examples

			Triangle begins as:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 2,  1;
  1, 2, 5,  2,  1;
  1, 2, 5,  5,  2,  1;
  1, 2, 5, 12,  5,  2,  1;
  1, 2, 5, 12, 12,  5,  2,  1;
  1, 2, 5, 12, 29, 12,  5,  2, 1;
  1, 2, 5, 12, 29, 29, 12,  5, 2, 1;
  1, 2, 5, 12, 29, 70, 29, 12, 5, 2, 1;
		

Crossrefs

Cf. A000129, A238375 (row sums).

Programs

  • Mathematica
    (* First program *)
    Pell[n_]:= Pell[n]= If[n<2, n, 2*Pell[n-1] + Pell[n-2]];
    T[n_, k_]:= Pell[1 + Min[k, n-k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 15 2021 *)
    (* Second program *)
    Table[Fibonacci[1 +Min[k, n-k], 2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, May 15 2021 *)
  • Sage
    def Pell(n): return n if (n<2) else 2*Pell(n-1) + Pell(n-2)
    def T(n,k): return Pell(1+min(k,n-k))
    flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, May 15 2021

Formula

Sum_{k=0..n} T(n,k) = A238375(n). - Philippe Deléham, Feb 27 2014
T(2*n,n) = A000129(n+1). - Philippe Deléham, Feb 27 2014

Extensions

Better name by Philippe Deléham, Feb 27 2014
Showing 1-1 of 1 results.