A238387 Decimal expansion of (1 + 4*e^(-3/2))/(3*sqrt(2*Pi)).
2, 5, 1, 6, 6, 8, 8, 3, 3, 3, 5, 5, 0, 7, 9, 5, 2, 2, 1, 0, 2, 9, 2, 3, 4, 8, 3, 1, 0, 5, 3, 9, 6, 0, 6, 2, 3, 9, 8, 7, 5, 4, 1, 8, 0, 4, 0, 7, 3, 4, 2, 6, 6, 5, 5, 0, 8, 9, 2, 1, 4, 2, 0, 6, 1, 8, 5, 9, 6, 4, 7, 1, 4, 6, 9, 0, 7, 0, 6, 5, 0, 7, 9, 2, 9, 3, 0
Offset: 0
Examples
0.25166883335507952210292348310539606239875418040734266550892142061...
References
- Yu. V. Prohorov, Asymptotic behavior of the binomial distribution. 1961. Select. Transl. Math. Statist. and Probability, Vol. 1 pp. 87-95. Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500 [a(2500) corrected by _Georg Fischer_, Jun 23 2020]
- Yu. V. Prohorov, Asymptotic behavior of the binomial distribution, Uspekhi Mat. Nauk, 8:3(55) (1953), 135-142 (in Russian). See lambda2 in theorem 3 p. 137.
Programs
-
Mathematica
RealDigits[N[(1 + 4*Exp[-3/2])/(3*Sqrt[2*Pi]), 1001]] (* G. C. Greubel, Jan 26 2016 *)
-
PARI
(1 + 4*exp(-3/2))/(3*sqrt(2*Pi)) \\ Michel Marcus, Feb 27 2014
Comments