cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238406 Number T(n,k) of partitions of n into k parts such that every i-th smallest part (counted with multiplicity) is different from i; triangle T(n,k), n>=0, 0<=k<=floor((sqrt(9+8*n)-3)/2) read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 4, 3, 0, 1, 4, 4, 0, 1, 5, 6, 0, 1, 5, 7, 0, 1, 6, 9, 1, 0, 1, 6, 11, 4, 0, 1, 7, 13, 7, 0, 1, 7, 15, 11, 0, 1, 8, 18, 15, 0, 1, 8, 20, 19, 0, 1, 9, 23, 25, 1, 0, 1, 9, 26, 30, 5
Offset: 0

Views

Author

Alois P. Heinz, Feb 26 2014

Keywords

Examples

			T(10,1) = 1: [10].
T(10,2) = 4: [5,5], [4,6], [3,7], [2,8].
T(10,3) = 3: [3,3,4], [2,4,4], [2,3,5].
Triangle T(n,k) begins:
  1;
  0;
  0, 1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3, 1;
  0, 1, 4, 3;
  0, 1, 4, 4;
  0, 1, 5, 6;
  0, 1, 5, 7;
  0, 1, 6, 9, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000012 (for n>1), A004526(n-2) (for n>4), A244239, A244240, A244241, A244242, A244243, A244244, A244245, A244246.
Row sums give A238394.
Cf. A052146.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
           x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..max(0, degree(p))))(b(n$2)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p - Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]] ]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Max[0, Exponent[p, x]]}]][b[n, n]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)