cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A238394 Number of partitions of n that sorted in increasing order do not contain a part k in position k.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 9, 12, 13, 17, 22, 28, 34, 42, 48, 59, 71, 88, 106, 130, 151, 181, 210, 250, 295, 354, 417, 494, 577, 675, 780, 909, 1053, 1231, 1431, 1668, 1930, 2240, 2573, 2963, 3392, 3896, 4461, 5129, 5873, 6742, 7710, 8816, 10043, 11439
Offset: 0

Views

Author

Giovanni Resta, Feb 26 2014

Keywords

Comments

The definition forbids partitions with a part equal to 1, so the smallest possible part is 2, which however can appear at most once.
Note that considering partitions in standard decreasing order, we obtain A064428.

Examples

			a(6) = 3, because of the 11 partitions of 6 only 3 do not contain a 1 in position 1, a 2 in position 2, or a 3 in position 3, namely (3,3), (2,4) and (6).
From _Joerg Arndt_, Mar 23 2014: (Start)
There are a(15) = 22 such partitions of 15:
01:  [ 2 3 4 6 ]
02:  [ 2 3 5 5 ]
03:  [ 2 3 10 ]
04:  [ 2 4 4 5 ]
05:  [ 2 4 9 ]
06:  [ 2 5 8 ]
07:  [ 2 6 7 ]
08:  [ 2 13 ]
09:  [ 3 3 4 5 ]
10:  [ 3 3 9 ]
11:  [ 3 4 8 ]
12:  [ 3 5 7 ]
13:  [ 3 6 6 ]
14:  [ 3 12 ]
15:  [ 4 4 7 ]
16:  [ 4 5 6 ]
17:  [ 4 11 ]
18:  [ 5 5 5 ]
19:  [ 5 10 ]
20:  [ 6 9 ]
21:  [ 7 8 ]
22:  [ 15 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, (p-> expand(
           x*(p-coeff(p, x, i-1)*x^(i-1))))(b(n-i, i)))))
        end:
    a:= n-> (p-> add(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 26 2014
  • Mathematica
    a[n_] := Length@ Select[ IntegerPartitions@n, 0 < Min@ Abs[ Reverse@# - Range@ Length@#] &]; Array[a, 30]
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]]; a[n_] := Function[p, Sum[Coefficient[p, x, i], {i, 0, Exponent[p, x]} ] ][b[n, n]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)

Formula

a(n) + A238395(n) = p(n) = A000041(n).
a(n) = Sum_{k>=0} A238406(n,k). - Alois P. Heinz, Feb 26 2014
a(n) = A238352(n,0). - Alois P. Heinz, Jun 08 2014

A244239 Number of partitions of n into 3 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 3, 4, 6, 7, 9, 11, 13, 15, 18, 20, 23, 26, 29, 32, 36, 39, 43, 47, 51, 55, 60, 64, 69, 74, 79, 84, 90, 95, 101, 107, 113, 119, 126, 132, 139, 146, 153, 160, 168, 175, 183, 191, 199, 207, 216, 224, 233, 242, 251, 260, 270, 279, 289, 299, 309, 319, 330, 340
Offset: 9

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=3 of A238406.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<14, [1, 3, 4, 6, 7][n-8],
          ((-4*n+56)*a(n-5) +(3*n-16)*a(n-4) +(7*n-66)*a(n-3)
          +(4*n-44)*a(n-2) +(28-3*n)*a(n-1)) / (7*n-78))
        end:
    seq(a(n), n=9..80);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[p, Expand[x*(p-Coefficient[p, x, i-1]*x^(i-1))]][b[n-i, i]]]]];
    a[n_] := Coefficient[b[n, n], x, 3];
    Table[a[n], {n, 9, 80}] (* Jean-François Alcover, May 01 2018, after Alois P. Heinz *)

Formula

From Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n > 15.
G.f.: x^9*(-x^6 + 2*x^4 + x^3 - 2*x - 1)/((x - 1)^3*(x + 1)*(x^2 + x + 1)). (End)

A244240 Number of partitions of n into 4 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 4, 7, 11, 15, 19, 25, 30, 37, 44, 53, 61, 72, 82, 95, 107, 122, 136, 154, 170, 190, 209, 232, 253, 279, 303, 332, 359, 391, 421, 457, 490, 529, 566, 609, 649, 696, 740, 791, 839, 894, 946, 1006, 1062, 1126, 1187, 1256, 1321, 1395, 1465, 1544, 1619, 1703
Offset: 14

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=4 of A238406.

Programs

  • PARI
    p_q(k) = {prod(j=1, k, 1-q^j); }
    GB_q(N, M)= {p_q(N+M)/(p_q(M)*p_q(N)); }
    A_q(N) = {my(q='q+O('q^N), g=sum(i=3,N, q^(8+i) * (GB_q(3,i) - q^2 - q^3 - sum(j=0,i, q^j))));
    Vec(g)}
    A_q(70) \\ John Tyler Rascoe, Apr 23 2024

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10) for n > 26.
G.f.: x^14*(-x^4 + x + 1)*(x^8 - x^5 - 2*x^4 + 2*x + 1)/((x - 1)^4*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)
G.f.: Sum_{i>2} q^(8+i) * ( q_binomial(3,i) - q^2 - q^3 - Sum_{j=0..i} (q^j) ). - John Tyler Rascoe, Apr 23 2024

A244241 Number of partitions of n into 5 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 5, 11, 19, 29, 39, 53, 67, 84, 103, 126, 150, 179, 210, 246, 285, 329, 376, 430, 487, 551, 619, 695, 775, 864, 958, 1061, 1170, 1289, 1414, 1551, 1694, 1849, 2012, 2188, 2372, 2570, 2777, 2999, 3231, 3479, 3737, 4013, 4300, 4605, 4923, 5260, 5610, 5981
Offset: 20

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=5 of A238406.

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n-15) for n > 40.
G.f.: x^20*(-x^20 + 2*x^16 + 2*x^15 + 4*x^14 + x^13 - 3*x^12 - 7*x^11 - 9*x^10 - 5*x^9 + 2*x^8 + 8*x^7 + 9*x^6 + 8*x^5 + x^4 - 3*x^3 - 5*x^2 - 4*x - 1)/((x - 1)^5*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)*(x^4 + x^3 + x^2 + x + 1)). (End)

A244242 Number of partitions of n into 6 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 6, 16, 31, 52, 76, 107, 143, 184, 233, 289, 354, 427, 512, 606, 716, 835, 972, 1122, 1292, 1476, 1685, 1909, 2161, 2432, 2734, 3057, 3417, 3799, 4222, 4673, 5168, 5693, 6270, 6879, 7545, 8249, 9014, 9821, 10698, 11619, 12616, 13665, 14795, 15981, 17259
Offset: 27

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=6 of A238406.

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) - 2*a(n-7) + a(n-9) + a(n-10) + a(n-11) + a(n-12) - 2*a(n-14) - a(n-16) + a(n-19) + a(n-20) - a(n-21) for n > 57.
G.f.: x^27*(-x^30 + 2*x^25 + 2*x^24 + 2*x^23 + 4*x^22 + 2*x^21 + x^20 - 9*x^19 - 12*x^18 - 16*x^17 - 12*x^16 + x^15 + 13*x^14 + 24*x^13 + 25*x^12 + 20*x^11 + 3*x^10 - 11*x^9 - 23*x^8 - 22*x^7 - 15*x^6 - 6*x^5 + 5*x^4 + 9*x^3 + 9*x^2 + 5*x + 1)/((x - 1)^6*(x + 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)). (End)

A244243 Number of partitions of n into 7 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 7, 22, 48, 88, 140, 207, 291, 389, 508, 646, 809, 995, 1212, 1457, 1742, 2061, 2425, 2833, 3295, 3808, 4386, 5024, 5737, 6522, 7394, 8349, 9406, 10559, 11827, 13208, 14721, 16361, 18153, 20090, 22198, 24472, 26938, 29591, 32462, 35543, 38866, 42427, 46258
Offset: 35

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=7 of A238406.

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28) for n > 77.
G.f.: x^35*(-x^42 + 2*x^36 + 2*x^35 + 2*x^34 + 2*x^33 + 4*x^32 + x^31 + 2*x^30 - 3*x^29 - 8*x^28 - 14*x^27 - 25*x^26 - 24*x^25 - 16*x^24 + 4*x^23 + 29*x^22 + 50*x^21 + 58*x^20 + 56*x^19 + 28*x^18 - 8*x^17 - 47*x^16 - 75*x^15 - 76*x^14 - 60*x^13 - 28*x^12 + 10*x^11 + 42*x^10 + 55*x^9 + 53*x^8 + 33*x^7 + 14*x^6 - 5*x^5 - 18*x^4 - 19*x^3 - 14*x^2 - 6*x - 1)/(x^28 - x^27 - x^26 + x^23 + x^21 + x^20 - x^18 - x^17 - 2*x^16 + 2*x^12 + x^11 + x^10 - x^8 - x^7 - x^5 + x^2 + x - 1). (End)

A244244 Number of partitions of n into 8 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 8, 29, 71, 142, 245, 384, 567, 792, 1069, 1401, 1796, 2260, 2801, 3427, 4150, 4981, 5925, 7004, 8222, 9602, 11151, 12895, 14838, 17016, 19430, 22120, 25090, 28385, 32004, 36004, 40384, 45203, 50463, 56231, 62506, 69367, 76809, 84919, 93697, 103237, 113534
Offset: 44

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=8 of A238406.

A244245 Number of partitions of n into 9 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 9, 37, 101, 220, 410, 684, 1062, 1553, 2174, 2943, 3875, 4995, 6319, 7876, 9689, 11798, 14219, 17005, 20179, 23798, 27894, 32531, 37743, 43610, 50169, 57509, 65679, 74778, 84858, 96036, 108373, 121997, 136983, 153471, 171546, 191373, 213040, 236731, 262556
Offset: 54

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=9 of A238406.

A244246 Number of partitions of n into 10 parts such that every i-th smallest part (counted with multiplicity) is different from i.

Original entry on oeis.org

1, 10, 46, 139, 329, 660, 1173, 1918, 2938, 4277, 5990, 8123, 10742, 13903, 17678, 22140, 27383, 33487, 40560, 48710, 58055, 68734, 80881, 94657, 110223, 127771, 147478, 169580, 194278, 221842, 252503, 286579, 324327, 366120, 412247, 463132, 519112, 580667
Offset: 65

Views

Author

Alois P. Heinz, Jun 23 2014

Keywords

Crossrefs

Column k=10 of A238406.
Showing 1-9 of 9 results.