cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238411 a(n) = 2*n*floor(n/2).

Original entry on oeis.org

0, 4, 6, 16, 20, 36, 42, 64, 72, 100, 110, 144, 156, 196, 210, 256, 272, 324, 342, 400, 420, 484, 506, 576, 600, 676, 702, 784, 812, 900, 930, 1024, 1056, 1156, 1190, 1296, 1332, 1444, 1482, 1600, 1640, 1764, 1806, 1936, 1980, 2116, 2162, 2304, 2352, 2500
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2014

Keywords

Comments

For n>=3, a(n) = the eccentric connectivity index of the cycle C[n] on n vertices. The eccentric connectivity index of a simple connected graph G is defined as the sum over all vertices i of G of the product E(i)D(i), where E(i) is the eccentricity and D(i) is the degree of vertex i. For example, a(6)=36 because each vertex of C[6] has degree 2 and eccentricity 3; 6*2*3 = 36.

Crossrefs

Cf. A093353.

Programs

  • Magma
    [2*n*Floor(n/2): n in [1..50]]; // Bruno Berselli, Feb 25 2016
  • Maple
    a := proc (n) options operator, arrow: 2*n*floor((1/2)*n) end proc: seq(a(n), n = 1 .. 70);
  • Mathematica
    Table[2 n Floor[n/2], {n, 1, 50}] (* Bruno Berselli, Feb 25 2016 *)
  • Maxima
    makelist(2*n*floor(n/2), n, 1, 50); /* Bruno Berselli, Feb 25 2016 */
    
  • Sage
    [2*n*floor(n/2) for n in (1..50)] # Bruno Berselli, Feb 25 2016
    

Formula

From Bruno Berselli, Feb 25 2016: (Start)
G.f.: 2*x*(2 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(2*n + (-1)^n - 1)/2.
a(n+1) = 2*A093353(n). (End)