cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242371 Modified eccentric connectivity index of the cycle graph with n vertices, C[n].

Original entry on oeis.org

12, 32, 40, 72, 84, 128, 144, 200, 220, 288, 312, 392, 420, 512, 544, 648, 684, 800, 840, 968, 1012, 1152, 1200, 1352, 1404, 1568, 1624, 1800, 1860, 2048, 2112, 2312, 2380, 2592, 2664, 2888, 2964, 3200, 3280, 3528, 3612, 3872, 3960, 4232, 4324, 4608, 4704
Offset: 3

Views

Author

Nilanjan De, Jun 08 2014

Keywords

Comments

The modified eccentric connectivity index of a graph is defined as the sum of the products of eccentricity with the total degree of neighboring vertices, over all vertices of the graph. This is a generalization of eccentric connectivity index.
a(n) = 4*A093353(n-1) = n*A168273(n) for n>2. - Alois P. Heinz, Jun 26 2014

Examples

			a(3) = 3*4 = 12 because there are 3 vertices and each vertex has eccentricity 1 and the total degree of neighboring vertices is 4.
		

Crossrefs

Programs

  • Maple
    a:= n-> n*(2*n-1+(-1)^n):
    seq(a(n), n=3..60);  # Alois P. Heinz, Jun 26 2014
  • Mathematica
    a[n_] := 2n(n-Boole[OddQ[n]]);
    Table[a[n], {n, 3, 50}] (* Jean-François Alcover, Nov 28 2018 *)
  • PARI
    a(n) = if (n % 2, 2*n*(n-1), 2*n^2); \\ Michel Marcus, Jun 20 2014

Formula

a(n) = 2*n*(n-1) if n is odd; and a(n) = 2*n^2 if n is even (n>2).
G.f.: -4*x^3*(3+5*x-4*x^2-2*x^3+2*x^4)/((x+1)^2*(x-1)^3). - Alois P. Heinz, Jun 26 2014

A269265 a(0) = a(1) = 1; thereafter a(n) = a(n-1) + a(n-2) if n is even, otherwise a(n) = a(n-1)^2.

Original entry on oeis.org

1, 1, 2, 4, 6, 36, 42, 1764, 1806, 3261636, 3263442, 10650053687364, 10650056950806, 113423713055411194304049636, 113423713055421844361000442, 12864938683278671740537145884937248491231415124195364, 12864938683278671740537145998360961546653259485195806
Offset: 0

Views

Author

Vincenzo Librandi, Feb 23 2016

Keywords

Comments

The first bisection is A007018, the second bisection is A174864 (with an only initial 1).
After 2, all terms belong to A238411.

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else IsEven(n) select Self(n-1)^2 else Self(n-1)+Self(n-2): n in [1..20]];
  • Mathematica
    a[n_] := If[OddQ@n, a[n - 1] + a[n - 2], a[n - 1]^2]; a[0] = 1; Array[a, 17]

Formula

a(n) = ( 1 + Sum_{k=0..floor(n/2)-1} a(2*k+1) )^(3-(-1)^n)/2 for n>1.

Extensions

Edited and extended by Bruno Berselli, Feb 25 2016
Showing 1-2 of 2 results.