cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238420 a(n) is the Wiener index of the Lucas cube L_n.

Original entry on oeis.org

0, 4, 9, 40, 120, 390, 1176, 3536, 10395, 30260, 87120, 248844, 705744, 1989820, 5581485, 15586720, 43356936, 120187026, 332134440, 915304520, 2516113215, 6900949484, 18888143904, 51599794200, 140718765600, 383142771700, 1041660829521, 2828107288216, 7668512468760, 20768716848030, 56185646831160, 151840963183424, 409947452576739, 1105779284582180, 2980113861417840
Offset: 1

Views

Author

Emeric Deutsch, Mar 26 2014

Keywords

Comments

The Lucas cube L_n is defined in the Klavzar and Mollard reference (as Lambda_n).

Examples

			a(2)=4 because the Lucas cube L_2 is the path P_3 having Wiener index 1 + 1 + 2 = 4.
a(3)=9 because the Lucas cube L_3 is the star on 4 vertices having Wiener index 1 + 1 + 1 + 2 + 2 + 2 = 9.
		

Crossrefs

Cf. A000045.

Programs

  • Magma
    [n*Fibonacci(n-1)*Fibonacci(n+1): n in [1..40]]; // Vincenzo Librandi, Mar 30 2014
  • Mathematica
    Table[n Fibonacci[n - 1] Fibonacci[n + 1], {n, 1, 40}] (* Vincenzo Librandi, Mar 30 2014 *)
    Table[(3 (-1)^n + LucasL[2 n]) n/5, {n, 15}] (* Eric W. Weisstein, Jul 29 2023 *)
    LinearRecurrence[{4, 0, -10, 0, 4, -1}, {0, 4, 9, 40, 120, 390}, 20] (* Eric W. Weisstein, Jul 29 2023 *)
    CoefficientList[Series[x (4 - 7 x + 4 x^2)/(1 - 2 x - 2 x^2 + x^3)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)

Formula

a(n) = n * F(n-1) * F(n+1) where F(n)=A000045(n) are the Fibonacci numbers.
a(n) = (1/5) * ((4n+4)*F(2n-2) + (7n+7)*F(2n-1) - 3(n+1)*(-1)^n). - Ralf Stephan, Mar 30 2014
G.f.: (4*x^3 - 7*x^2 + 4*x)/((x + 1)^2 * (x^2 - 3*x + 1)^2). - Ralf Stephan, Mar 30 2014