cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238422 Number of compositions of n where no consecutive parts differ by 1.

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 15, 23, 43, 70, 128, 214, 383, 651, 1149, 1971, 3457, 5961, 10412, 18011, 31384, 54384, 94639, 164163, 285454, 495452, 861129, 1495126, 2597970, 4511573, 7838280, 13613289, 23649355, 41076088, 71354998, 123939602, 215294730, 373962643, 649597906, 1128352145
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 26 2014

Keywords

Examples

			The a(6) = 15 such compositions are:
01:  [ 1 1 1 1 1 1 ]
02:  [ 1 1 1 3 ]
03:  [ 1 1 3 1 ]
04:  [ 1 1 4 ]
05:  [ 1 3 1 1 ]
06:  [ 1 4 1 ]
07:  [ 1 5 ]
08:  [ 2 2 2 ]
09:  [ 2 4 ]
10:  [ 3 1 1 1 ]
11:  [ 3 3 ]
12:  [ 4 1 1 ]
13:  [ 4 2 ]
14:  [ 5 1 ]
15:  [ 6 ]
		

Crossrefs

Cf. A116931 (partitions where no consecutive parts differ by 1).

Programs

  • Maple
    # b(n, i): number of compositions of n where the leftmost part j
    #          and i do not have distance 1
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(`if`(abs(i-j)=1, 0, b(n-j, j)), j=1..n))
        end:
    a:= n-> b(n, -1):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[Abs[i - j] == 1, 0, b[n - j, j]], {j, 1, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2014, after Maple *)

Formula

a(n) ~ c * d^n, where c = 0.501153706040308227351395770679776260606990346633815... and d = 1.737029107886986816124470304294547513896522086125645631179... - Vaclav Kotesovec, Feb 26 2014