A238422 Number of compositions of n where no consecutive parts differ by 1.
1, 1, 2, 2, 5, 7, 15, 23, 43, 70, 128, 214, 383, 651, 1149, 1971, 3457, 5961, 10412, 18011, 31384, 54384, 94639, 164163, 285454, 495452, 861129, 1495126, 2597970, 4511573, 7838280, 13613289, 23649355, 41076088, 71354998, 123939602, 215294730, 373962643, 649597906, 1128352145
Offset: 0
Keywords
Examples
The a(6) = 15 such compositions are: 01: [ 1 1 1 1 1 1 ] 02: [ 1 1 1 3 ] 03: [ 1 1 3 1 ] 04: [ 1 1 4 ] 05: [ 1 3 1 1 ] 06: [ 1 4 1 ] 07: [ 1 5 ] 08: [ 2 2 2 ] 09: [ 2 4 ] 10: [ 3 1 1 1 ] 11: [ 3 3 ] 12: [ 4 1 1 ] 13: [ 4 2 ] 14: [ 5 1 ] 15: [ 6 ]
Links
- Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A116931 (partitions where no consecutive parts differ by 1).
Programs
-
Maple
# b(n, i): number of compositions of n where the leftmost part j # and i do not have distance 1 b:= proc(n, i) option remember; `if`(n=0, 1, add(`if`(abs(i-j)=1, 0, b(n-j, j)), j=1..n)) end: a:= n-> b(n, -1): seq(a(n), n=0..50);
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[If[Abs[i - j] == 1, 0, b[n - j, j]], {j, 1, n}]]; a[n_] := b[n, -1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 06 2014, after Maple *)
Formula
a(n) ~ c * d^n, where c = 0.501153706040308227351395770679776260606990346633815... and d = 1.737029107886986816124470304294547513896522086125645631179... - Vaclav Kotesovec, Feb 26 2014