A238433 Number of partitions of n avoiding equidistant 3-term arithmetic progressions.
1, 1, 2, 2, 4, 5, 6, 8, 13, 12, 19, 23, 29, 35, 45, 52, 68, 80, 98, 111, 141, 163, 198, 230, 283, 320, 376, 443, 517, 585, 719, 799, 932, 1085, 1254, 1417, 1668, 1861, 2138, 2449, 2804, 3166, 3666, 4083, 4662, 5277, 5960, 6676, 7651, 8494, 9635, 10803, 12157
Offset: 0
Keywords
Examples
The a(8) = 13 such partitions are: 01: [ 1 1 2 4 ] 02: [ 1 1 3 3 ] 03: [ 1 1 6 ] 04: [ 1 2 2 3 ] 05: [ 1 2 5 ] 06: [ 1 3 4 ] 07: [ 1 7 ] 08: [ 2 2 4 ] 09: [ 2 3 3 ] 10: [ 2 6 ] 11: [ 3 5 ] 12: [ 4 4 ] 13: [ 8 ] Note that the fourth partition has the arithmetic progression 1,2,3, but not in equidistant positions.
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..300 (terms 0..150 from Joerg Arndt and Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i, l) local j; for j from 2 to iquo(nops(l)+1, 2) do if l[1]-l[j]=l[j]-l[2*j-1] then return 0 fi od; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, l)+ `if`(i>n, 0, b(n-i, i, [i,l[]])))) end: a:= n-> b(n, n, []): seq(a(n), n=0..40);
-
Mathematica
b[n_, i_, l_] := b[n, i, l] = Module[{j}, For[ j = 2 , j <= Quotient[ Length[l] + 1, 2] , j++, If[ l[[1]] - l[[j]] == l[[j]] - l[[2*j - 1]] , Return[0]]]; If[n == 0, 1, If[i < 1, 0, b[n, i - 1, l] + If[i > n, 0, b[n - i, i, Prepend[l, i]]]]]]; a[n_] := b[n, n, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, May 21 2018, translated from Maple *)