A238442 Triangle read by rows demonstrating Euler's pentagonal theorem for the sum of divisors.
1, 1, 2, 3, 1, 4, 3, 7, 4, -5, 6, 7, -1, 12, 6, -3, -7, 8, 12, -4, -1, 15, 8, -7, -3, 13, 15, -6, -4, 18, 13, -12, -7, 12, 18, -8, -6, 12, 28, 12, -15, -12, 1, 14, 28, -13, -8, 3, 24, 14, -18, -15, 4, 15, 24, 24, -12, -13, 7, 1, 31, 24, -28, -18, 6, 3
Offset: 1
Examples
Triangle begins: 1; 1, 2; 3, 1; 4, 3; 7, 4, -5; 6, 7, -1; 12, 6, -3, -7; 8, 12, -4, -1; 15, 8, -7, -3; 13, 15, -6, -4; 18, 13, -12, -7; 12, 18, -8, -6, 12; 28, 12, -15, -12, 1; 14, 28, -13, -8, 3; 24, 14, -18, -15, 4, 15; 24, 24, -12, -13, 7, 1; 31, 24, -28, -18, 6, 3; 18, 31, -14, -12, 12, 4; 39, 18, -24, -28, 8, 7; 20, 39, -24, -14, 15, 6; 42, 20, -31, -24, 13, 12; 32, 42, -18, -24, 18, 8, -22; 36, 32, -39, -31, 12, 15, -1; 24, 36, -20, -18, 28, 13, -3; 60, 24, -42, -39, 14, 18, -4; 31, 60, -32, -20, 24, 12, -7, -26; ... For n = 21 the sum of divisors of 21 is 1 + 3 + 7 + 21 = 32. On the other hand, from Euler's Pentagonal Number Theorem we have that the sum of divisors of 21 is S_21 = S_20 + S_19 - S_16 - S_14 + S_9 + S_6, the same as the sum of the 21st row of triangle: 42 + 20 - 31 - 24 + 13 + 12 = 32, equaling the sum of divisors of 21. For n = 22 the sum of divisors of 22 is 1 + 2 + 11 + 22 = 36. On the other hand, from Euler's Pentagonal Number Theorem we have that the sum of divisors of 22 is S_22 = S_21 + S_20 - S_17 - S_15 + S_10 + S_7 - S_0, the same as the sum of the 22nd row of triangle is 32 + 42 - 18 - 24 + 18 + 8 - 22 = 36, equaling the sum of divisors of 22. Note that S_0 = n, hence in this case S_0 = 22.
Links
- L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 8.
- L. Euler, De mirabilibus proprietatibus numerorum pentagonalium
- L. Euler, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs
- L. Euler, Discovery of a most extraordinary law of numbers, relating to the sum of their divisors
- L. Euler, Observatio de summis divisorum, p. 8.
- L. Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- L. Euler, J. Bell, A demonstration of a theorem on the order observed in the sums of divisors, arXiv:math/0507201 [math.HO], 2005-2009.
- Index entries for sequences related to sigma(n)
Crossrefs
Programs
-
Mathematica
rows = m = 18; a057077[n_] := {1, 1, -1, -1}[[Mod[n, 4] + 1]]; a001318[n_] := (1/8)((2n + 1) Mod[n, 2] + 3n^2 + 2n); a235963[n_] := Flatten[Table[k, {k, 0, m}, {(k+1)/(Mod[k, 2]+1)}]][[n+1]]; T[n_, k_] := If[n == a001318[k] && k == a235963[n], a001318[k] a057077[k - 1], a057077[k - 1] DivisorSigma[1, n - a001318[k]]]; Table[T[n, k], {n, 1, m}, {k, 1, a235963[n]}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)
Comments