cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000326 Pentagonal numbers: a(n) = n*(3*n-1)/2.

Original entry on oeis.org

0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
Offset: 0

Views

Author

Keywords

Comments

The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
a(n) is the largest sum of n positive integers x_1, ..., x_n such that x_i | x_(i+1)+1 for each 1 <= i <= n, where x_(n+1) = x_1. - Yifan Xie, Feb 21 2025

Examples

			Illustration of initial terms:
.
.                                       o
.                                     o o
.                          o        o o o
.                        o o      o o o o
.                o     o o o    o o o o o
.              o o   o o o o    o o o o o
.        o   o o o   o o o o    o o o o o
.      o o   o o o   o o o o    o o o o o
.  o   o o   o o o   o o o o    o o o o o
.
.  1    5     12       22           35
- _Philippe Deléham_, Mar 30 2013
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
  • Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 38, 40.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 52-53, 129-130, 132.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 7-10.
  • André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.

Programs

  • GAP
    List([0..50],n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
    
  • Haskell
    a000326 n = n * (3 * n - 1) `div` 2  -- Reinhard Zumkeller, Jul 07 2012
    
  • Magma
    [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
    
  • Maple
    A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
    A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
  • Mathematica
    Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
    LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
    pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
    Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
    (* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
    PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    a(n)=n*(3*n-1)/2
    
  • PARI
    vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    is_a000326(n) = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5); \\ Hugo Pfoertner, Aug 03 2023
    
  • Python
    # Intended to compute the initial segment of the sequence, not isolated terms.
    def aList():
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 3, y + 3
    A000326 = aList()
    print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019

Formula

Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
a(n) = Sum_{k = 0..3*n} (-1)^(n+k+1) * binomial(k, 2)*binomial(3*n+k-1, 2*k). - Peter Bala, Nov 04 2024

Extensions

Incorrect example removed by Joerg Arndt, Mar 11 2010

A196020 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists the odd numbers interleaved with k-1 zeros, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 3, 5, 1, 7, 0, 9, 3, 11, 0, 1, 13, 5, 0, 15, 0, 0, 17, 7, 3, 19, 0, 0, 1, 21, 9, 0, 0, 23, 0, 5, 0, 25, 11, 0, 0, 27, 0, 0, 3, 29, 13, 7, 0, 1, 31, 0, 0, 0, 0, 33, 15, 0, 0, 0, 35, 0, 9, 5, 0, 37, 17, 0, 0, 0, 39, 0, 0, 0, 3, 41, 19, 11, 0, 0, 1, 43, 0, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 47, 0, 13, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2013

Keywords

Comments

Gives an identity for sigma(n): alternating sum of row n equals the sum of divisors of n. For proof see Max Alekseyev link.
Row n has length A003056(n) hence column k starts in row A000217(k).
The number of positive terms in row n is A001227(n), the number of odd divisors of n.
If n = 2^j then the only positive integer in row n is T(n,1) = 2^(j+1) - 1.
If n is an odd prime then the only two positive integers in row n are T(n,1) = 2n - 1 and T(n,2) = n - 2.
If T(n,k) = 3 then T(n+1,k+1) = 1, the first element of the column k+1.
The partial sums of column k give the column k of A236104.
The connection with the symmetric representation of sigma is as follows: A236104 --> A235791 --> A237591 --> A237593 --> A239660 --> A237270.
Alternating sum of row n equals the number of units cubes that protrude from the n-th level of the stepped pyramid described in A245092. - Omar E. Pol, Oct 28 2015
Conjecture: T(n,k) is the difference between the square of the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the square of the total number of partitions of all positive integers < n into exactly k consecutive parts. - Omar E. Pol, Feb 14 2018
From Omar E. Pol, Nov 24 2020: (Start)
T(n,k) is also the number of steps in the first n levels of the k-th double-staircase that has at least one step in the n-th level of the "Double- staircases" diagram, otherwise T(n,k) = 0, (see the Example section).
For the connection with A280851 see also the algorithm of A280850 and the conjecture of A296508. (End)
The number of zeros in the n-th row equals A238005(n). - Omar E. Pol, Sep 11 2021
Apart from the alternating row sums and the sum of divisors function A000203 another connection with Euler's pentagonal theorem is that in the irregular triangle of A238442 the k-th column starts in the row that is the k-th generalized pentagonal number A001318(k) while here the k-th column starts in the row that is the k-th generalized hexagonal number A000217(k). Both A001318 and A000217 are successive members of the same family: the generalized polygonal numbers. - Omar E. Pol, Sep 23 2021
Other triangle with the same row lengths and alternating row sums equals sigma(n) is A252117. - Omar E. Pol, May 03 2022

Examples

			Triangle begins:
   1;
   3;
   5,  1;
   7,  0;
   9,  3;
  11,  0,  1;
  13,  5,  0;
  15,  0,  0;
  17,  7,  3;
  19,  0,  0,  1;
  21,  9,  0,  0;
  23,  0,  5,  0;
  25, 11,  0,  0;
  27,  0,  0,  3;
  29, 13,  7,  0,  1;
  31,  0,  0,  0,  0;
  33, 15,  0,  0,  0;
  35,  0,  9,  5,  0;
  37, 17,  0,  0,  0;
  39,  0,  0,  0,  3;
  41, 19, 11,  0,  0,  1;
  43,  0,  0,  7,  0,  0;
  45, 21,  0,  0,  0,  0;
  47,  0, 13,  0,  0,  0;
  49, 23,  0,  0,  5,  0;
  51,  0,  0,  9,  0,  0;
  53, 25, 15,  0,  0,  3;
  55,  0,  0,  0,  0,  0,  1;
  ...
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 29, 13, 7, 0, 1, so the alternating row sum is 29 - 13 + 7 - 0 + 1 = 24, equaling the sum of divisors of 15.
If n is even then the alternating sum of the n-th row is simpler to evaluate than the sum of divisors of n. For example the sum of divisors of 24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60, and the alternating sum of the 24th row of triangle is 47 - 0 + 13 - 0 + 0 - 0 = 60.
From _Omar E. Pol_, Nov 24 2020: (Start)
For an illustration of the rows of triangle consider the infinite "double-staircases" diagram defined in A335616 (see also the theorem there).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
The first largest double-staircase has 29 horizontal steps, the second double-staircase has 13 steps, the third double-staircase has 7 steps, and the fifth double-staircases has only one step. Note that the fourth double-staircase does not count because it does not have horizontal steps in the 15th level, so the 15th row of triangle is [29, 13, 7, 0, 1].
For a connection with the "Ziggurat" diagram and the parts and subparts of the symmetric representation of sigma(15) see also A237270. (End)
		

Crossrefs

Programs

  • Maple
    T_row := proc(n) local T;
    T := (n, k) -> if modp(n-k/2, k) = 0 and n >= k*(k+1)/2 then 2*n/k-k else 0 fi;
    seq(T(n,k), k=1..floor((sqrt(8*n+1)-1)/2)) end:
    seq(print(T_row(n)),n=1..24); # Peter Luschny, Oct 27 2015
  • Mathematica
    T[n_, k_] := If[Mod[n - k*(k+1)/2, k] == 0 ,2*n/k - k, 0]
    row[n_] := Floor[(Sqrt[8n+1]-1)/2]
    line[n_] := Map[T[n, #]&, Range[row[n]]]
    a196020[m_, n_] := Map[line, Range[m, n]]
    Flatten[a196020[1,22]] (* data *)
    (* Hartmut F. W. Hoft, Oct 26 2015 *)
    A196020row = Function[n,Table[If[Divisible[Numerator[n-k/2],k] && CoprimeQ[ Denominator[n- k/2], k],2*n/k-k,0],{k,1,Floor[(Sqrt[8 n+1]-1)/2]}]]
    Flatten[Table[A196020row[n], {n,1,24}]] (* Peter Luschny, Oct 28 2015 *)
  • Sage
    def T(n,k):
        q = (2*n-k)/2
        b = k.divides(q.numerator()) and gcd(k,q.denominator()) == 1
        return 2*n/k - k if b else 0
    for n in (1..24): [T(n, k) for k in (1..floor((sqrt(8*n+1)-1)/2))] # Peter Luschny, Oct 28 2015

Formula

A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k).
T(n,k) = 2*A211343(n,k) - 1, if A211343(n,k) >= 1 otherwise T(n,k) = 0.
If n==k/2 (mod k) and n>=k(k+1)/2, then T(n,k) = 2*n/k - k; otherwise T(n,k) = 0. - Max Alekseyev, Nov 18 2013
T(n,k) = A236104(n,k) - A236104(n-1,k), assuming that A236104(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 14 2018
T(n,k) = A237048(n,k)*A338721(n,k). - Omar E. Pol, Feb 22 2022

A175003 Triangle read by rows demonstrating Euler's pentagonal theorem for partition numbers.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 5, 3, -1, 7, 5, -1, 11, 7, -2, -1, 15, 11, -3, -1, 22, 15, -5, -2, 30, 22, -7, -3, 42, 30, -11, -5, 56, 42, -15, -7, 1, 77, 56, -22, -11, 1, 101, 77, -30, -15, 2, 135, 101, -42, -22, 3, 1, 176, 135, -56, -30, 5, 1, 231, 176, -77, -42, 7, 2
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2010

Keywords

Comments

Row sums = A000041 starting with offset 1.
Sum of n-th row terms = leftmost term of next row, such that terms in each row demonstrate Euler's pentagonal theorem.
Let Q = triangle A027293 with partition numbers in each column.
Let M = a diagonalized variant of A080995 as the characteristic function of the generalized pentagonal numbers starting with offset 1: (1, 1, 0, 0, 1,...)
Sign the 1's: (++--++...) getting (1, 1, 0, 0, -1, 0, -1,...) which is the diagonal of matrix M, (as an infinite lower triangular matrix with the rest zeros).
Triangle A175003 = Q*M, with deleted zeros.
Column k starts at row A001318(k). - Omar E. Pol, Sep 21 2011
From Omar E. Pol, Apr 22 2014: (Start)
Row n has length A235963(n).
For Euler's pentagonal theorem for the sum of divisors see A238442.
Note that both of Euler's pentagonal theorems refer to generalized pentagonal numbers (A001318), not to pentagonal numbers (A000326). (End)

Examples

			Triangle begins:
    1;
    1,   1;
    2,   1;
    3,   2;
    5,   3,  -1;
    7,   5,  -1;
   11,   7,  -2,  -1;
   15,  11,  -3,  -1;
   22,  15,  -5,  -2;
   30,  22,  -7,  -3;
   42,  30, -11,  -5;
   56,  42, -15,  -7,   1;
   77,  56, -22, -11,   1;
  101,  77, -30, -15,   2;
  ...
		

Crossrefs

Formula

T(n,k) = A057077(k-1)*A000041(A195310(n,k)), n >= 1, k >= 1. - Omar E. Pol, Sep 21 2011

Extensions

Corrected and extended by Omar E. Pol, Feb 14 2013

A339278 Irregular triangle read by rows T(n,k), (n >= 1, k >= 1), in which the partition number A000041(n-1) is the length of row n and every column k is A000203, the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 7, 3, 1, 6, 4, 3, 1, 1, 12, 7, 4, 3, 3, 1, 1, 8, 6, 7, 4, 4, 3, 3, 1, 1, 1, 1, 15, 12, 6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 13, 8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 18, 15, 8, 12, 12, 6, 6, 7, 7, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

The sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n.
T(n,k) is also the number of cubic cells (or cubes) added at the n-th stage in the k-th level starting from the base in the tower described in A221529, assuming that the tower is an object under construction (see the example). - Omar E. Pol, Jan 20 2022

Examples

			Triangle begins:
   1;
   3;
   4,  1;
   7,  3,  1;
   6,  4,  3, 1, 1;
  12,  7,  4, 3, 3, 1, 1;
   8,  6,  7, 4, 4, 3, 3, 1, 1, 1, 1;
  15, 12,  6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1;
  13,  8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
...
From _Omar E. Pol_, Jan 13 2022: (Start)
Illustration of the first six rows of triangle showing the growth of the symmetric tower described in A221529:
    Level k: 1              2         3        4       5      6     7
Stage
  n   _ _ _ _ _ _ _ _
     |            _  |
  1  |           |_| |
     |_ _ _ _ _ _ _ _|
     |          _    |
     |         | |_  |
  2  |         |_ _| |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _
     |        _      |        _  |
     |       | |     |       |_| |
  3  |       |_|_ _  |           |
     |         |_ _| |           |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _
     |      _        |      _    |      _  |
     |     | |       |     | |_  |     |_| |
  4  |     | |_      |     |_ _| |         |
     |     |_  |_ _  |           |         |
     |       |_ _ _| |           |         |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _ _ _ _ _
     |    _          |    _      |    _    |    _  |    _  |
     |   | |         |   | |     |   | |_  |   |_| |   |_| |
     |   | |         |   |_|_ _  |   |_ _| |       |       |
  5  |   |_|_        |     |_ _| |         |       |       |
     |       |_ _ _  |           |         |       |       |
     |       |_ _ _| |           |         |       |       |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _ _ _ _
     |  _            |  _        |  _      |  _    |  _    |  _  |  _  |
     | | |           | | |       | | |     | | |_  | | |_  | |_| | |_| |
     | | |           | | |_      | |_|_ _  | |_ _| | |_ _| |     |     |
     | | |_ _        | |_  |_ _  |   |_ _| |       |       |     |     |
  6  | |_    |       |   |_ _ _| |         |       |       |     |     |
     |   |_  |_ _ _  |           |         |       |       |     |     |
     |     |_ _ _ _| |           |         |       |       |     |     |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _|_ _ _|
.
Every cell in the diagram of the symmetric representation of sigma represents a cubic cell or cube.
For n = 6 and k = 3 we add four cubes at 6th stage in the third level of the structure of the tower starting from the base so T(6,3) = 4.
For n = 9 another connection with the tower is as follows:
First we take the columns from the above triangle and build a new triangle in which all columns start at row 1 as shown below:
.
   1,  1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
   3,  3,  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3;
   4,  4,  4, 4, 4, 4, 4, 4, 4, 4, 4;
   7,  7,  7, 7, 7, 7, 7;
   6,  6,  6, 6, 6;
  12, 12, 12;
   8,  8;
  15;
  13;
.
Then we rotate the triangle by 90 degrees as shown below:
                                       _
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  |_|_
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |_ _|_
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |_ _|_|_
  1, 3, 4, 7;                         |     | |
  1, 3, 4, 7;                         |_ _ _| |_
  1, 3, 4, 7, 6;                      |     |   |
  1, 3, 4, 7, 6;                      |_ _ _|_ _|_
  1, 3, 4, 7, 6, 12;                  |_ _ _ _| | |_
  1, 3, 4, 7, 6, 12, 8;               |_ _ _ _|_|_ _|_ _
  1, 3, 4, 7, 6, 12, 8, 15; 13;       |_ _ _ _ _|_ _|_ _|
.
                                         Lateral view
                                         of the tower
.                                      _ _ _ _ _ _ _ _ _
                                      |_| | | | | | |   |
                                      |_ _|_| | | | |   |
                                      |_ _|  _|_| | |   |
                                      |_ _ _|    _|_|   |
                                      |_ _ _|  _|    _ _|
                                      |_ _ _ _|     |
                                      |_ _ _ _|  _ _|
                                      |         |
                                      |_ _ _ _ _|
.
                                           Top view
                                         of the tower
.
The sum of the m-th row of the new triangle equals A024916(j) where j is the length of the m-th row, equaling the number of cubic cells in the m-th level of the tower. For example: the last row of triangle has 9 terms and the sum of the last row is 1 + 3 + 4 + 7 + 6 + 12 + 8 + 15 + 13 = A024916(9) = 69, equaling the number of cubes in the base of the tower. (End)
		

Crossrefs

Sum of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000203.
The length of the m-th block in row n is A187219(m), m >= 1.
Row sums give A138879.
Cf. A337209 (another version).
Cf. A272172 (analog for the stepped pyramid described in A245092).

Programs

  • Mathematica
    A339278[rowmax_]:=Table[Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]],{n,rowmax}];
    A339278[15] (* Generates 15 rows *) (* Paolo Xausa, Feb 17 2023 *)
  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
    
  • PARI
    A339278(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(m-1)-numbpart(m-2),i,sigma(n-m+1)))));
    A339278(15) \\ Generates 15 rows \\ Paolo Xausa, Feb 17 2023

Formula

a(m) = A000203(A336811(m)).
T(n,k) = A000203(A336811(n,k)).

A337209 Triangle read by rows T(n,k), (n >= 1, k > = 1), in which row n has length A000070(n-1) and every column gives A000203, the sum of divisors function.

Original entry on oeis.org

1, 3, 1, 4, 3, 1, 1, 7, 4, 3, 3, 1, 1, 1, 6, 7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1, 12, 6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 15, 8, 12, 12, 6, 6, 6, 7, 7, 7, 7, 7, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Omar E. Pol, Nov 27 2020

Keywords

Comments

Conjecture: the sum of row n equals A066186(n), the sum of all parts of all partitions of n.

Examples

			Triangle begins:
   1;
   3,  1;
   4,  3, 1, 1;
   7,  4, 3, 3, 1, 1, 1;
   6,  7, 4, 4, 3, 3, 3, 1, 1, 1, 1, 1;
  12,  6, 7, 7, 4, 4, 4, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
   8, 12, 6, 6, 7, 7, 7, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, ...
  ...
		

Crossrefs

Sum of divisors of terms of A176206.
Cf. A339278 (another version).

Programs

  • Mathematica
    A337209row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]],{m,0,n-1}]];Array[A337209row,10] (* Paolo Xausa, Sep 02 2023 *)
  • PARI
    f(n) = sum(k=0, n-1, numbpart(k));
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); );} \\ Michel Marcus, Jan 13 2021

Formula

T(n,k) = A000203(A176206(n,k)).

A235963 n appears (n+1)/(1 + (n mod 2)) times.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Mircea Merca, Jan 17 2014

Keywords

Comments

n appears A001318(n+1) - A001318(n) = A026741(n+1) times.
Sum_{k=0...a(n)} (-1)^ceiling(k/2)*p(n-G(k)) = 0 for n>0, where p(n)=A000041(n) is the partition function, and G(k)=A001318(k) denotes the generalized pentagonal numbers.
Row lengths of A238442, n >= 1. - Omar E. Pol, Dec 22 2016

Examples

			As a triangle:
  0;
  1;
  2, 2, 2;
  3, 3;
  4, 4, 4, 4, 4;
  5, 5, 5;
  6, 6, 6, 6, 6, 6, 6;
  7, 7, 7, 7;
  8, 8, 8, 8, 8, 8, 8, 8, 8;
  ...
		

Crossrefs

First differences are A080995.

Programs

  • Maple
    T:= n-> n$(n+1)/(n mod 2+1):
    seq(T(n), n=0..13);  # Alois P. Heinz, Nov 23 2024
  • Mathematica
    Table[Table[n, {(n + 1)/(1 + Mod[n, 2])}], {n, 0, 14}]//Flatten (* T. D. Noe, Jan 29 2014 *)
  • Python
    from math import isqrt
    def A235963(n): return (m:=isqrt((n+1<<3)//3))-(n+1<=(m*(3*m+4)+1 if m&1 else m*(3*m+2))>>3) # Chai Wah Wu, Nov 23 2024
    
  • Python
    A235963=lambda n: ((s:=isqrt(24*n+1))+1)//6+(s-1)//6 # Natalia L. Skirrow, May 13 2025

Formula

Let t = (sqrt(n*8/3 + 1) - 1)/2 + 1/3 and let k = floor(t); then a(n) = 2k if t - k < 2/3, 2k+1 otherwise. - Jon E. Schoenfield, Jun 13 2017
a(n) = m if n+1>A001318(m) and a(n) = m-1 otherwise where m = floor(sqrt(8(n+1)/3)). - Chai Wah Wu, Nov 23 2024
From Natalia L. Skirrow, May 13 2025: (Start)
a(n) = A180447(n) + A085141(n).
a(n) = floor((s+1)/6) + floor((s-1)/6) where s=floor(sqrt(24*n+1)).
G.f.: (f(x,x^2)-1)/(1-x), where f is Ramanujan's bivariate theta function. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/8 + (2-sqrt(2))*log(2)/8 + log(2+sqrt(2))/(2*sqrt(2)). - Amiram Eldar, May 28 2025

A252117 Irregular triangle read by row: T(n,k), n>=1, k>=1, in which column k lists the numbers of A000716 multiplied by A000330(k), and the first element of column k is in row A000217(k).

Original entry on oeis.org

1, 3, 9, 5, 22, 15, 51, 45, 108, 110, 14, 221, 255, 42, 429, 540, 126, 810, 1105, 308, 1479, 2145, 714, 30, 2640, 4050, 1512, 90, 4599, 7395, 3094, 270, 7868, 13200, 6006, 660, 13209, 22995, 11340, 1530, 21843, 39340, 20706, 3240, 55, 35581, 66045, 36960, 6630, 165, 57222, 109215, 64386, 12870, 495
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2014

Keywords

Comments

Gives an identity for sigma(n). Alternating sum of row n equals A000203(n), the sum of the divisors of n.
Row n has length A003056(n) hence column k starts in row A000217(k).
Column 1 is A000716, but here the offset is 1 not 0.
The 1st element of column k is A000330(k).
The 2nd element of column k is A059270(k).
The 3rd element of column k is A220443(k).
The partial sums of column k give the k-th column of A249120.
This triangle has been constructed after Mircea Merca's formula for A000203.
From Omar E. Pol, May 05 2022: (Start)
In the Honda-Yoda paper see "3. String theory and Riemann hypothesis". The coefficients that are mentioned in 3.11 are the first 16 terms of A000716, the coefficients that are mentioned in 3.12 are the first 5 terms of A000330, and the coefficients that are mentioned in 3.13 are the first 16 terms of A000203.
Another triangle with the same row lengths and whose alternating row sums give A000203 is A196020. (End)

Examples

			Triangle begins:
       1;
       3;
       9,      5;
      22,     15;
      51,     45;
     108,    110,     14;
     221,    255,     42;
     429,    540,    126;
     810,   1105,    308;
    1479,   2145,    714,     30;
    2640,   4050,   1512,     90;
    4599,   7395,   3094,    270;
    7868,  13200,   6006,    660;
   13209,  22995,  11340,   1530;
   21843,  39340,  20706,   3240,    55;
   35581,  66045,  36960,   6630,   165;
   57222, 109215,  64386,  12870,   495;
   90882, 177905, 110152,  24300,  1210;
  142769, 286110, 184926,  44370,  2805;
  221910, 454410, 305802,  79200,  5940;
  341649, 713845, 498134, 137970, 12155, 91;
...
For n = 6 the divisors of 6 are 1, 2, 3, 6, so the sum of the divisors of 6 is 1 + 2 + 3 + 6 = 12. On the other hand, the 6th row of the triangle is 108, 110, 14, so the alternating row sum is 108 - 110 + 14 = 12, equaling the sum of the divisors of 6.
For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of the divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 21843, 39340, 20706, 3240, 55, so the alternating row sum is 21843 - 39340 + 20706 - 3240 + 55 = 24, equaling the sum of the divisors of 15.
		

Crossrefs

Programs

Formula

A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k).

A244964 Number of distinct generalized pentagonal numbers dividing n.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 3, 3, 2, 1, 2, 1, 3, 2, 3, 1, 3, 2, 3, 1, 3, 1, 4, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 2, 2, 2, 3, 1, 2, 1, 6, 1, 3, 1, 2, 3, 2, 3, 3, 1, 4, 1, 2, 1, 4, 2, 2, 1, 3, 1, 4, 2, 3, 1, 2, 2, 3, 1, 3, 1, 4, 1, 3, 1, 3, 5
Offset: 1

Views

Author

Omar E. Pol, Jul 10 2014

Keywords

Comments

For more information about the generalized pentagonal numbers see A001318.

Examples

			For n = 10 the generalized pentagonal numbers <= 10 are [0, 1, 2, 5, 7]. There are three generalized pentagonal numbers that divide 10; they are [1, 2, 5], so a(10) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 1 &, IntegerQ[Sqrt[24*# + 1]] &]; Array[a, 100] (* Amiram Eldar, Dec 31 2023 *)
  • PARI
    a(n) = sumdiv(n, d, issquare(24*d + 1)); \\ Amiram Eldar, Dec 31 2023

Formula

From Amiram Eldar, Dec 31 2023: (Start)
a(n) = Sum_{d|n} A080995(d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 6 - 2*Pi/sqrt(3) = 2.372401... . (End)

A262613 Sum of divisors of n-th generalized pentagonal number.

Original entry on oeis.org

1, 3, 6, 8, 28, 24, 36, 42, 48, 90, 72, 80, 144, 96, 168, 217, 182, 312, 180, 192, 372, 216, 576, 456, 280, 588, 336, 352, 864, 576, 720, 855, 558, 756, 702, 936, 1120, 600, 1080, 1116, 1024, 2016, 1008, 816, 1296, 1152, 2016, 2072, 1178, 1860, 1344, 1120, 3600
Offset: 1

Views

Author

Omar E. Pol, Nov 24 2015

Keywords

Comments

For a remarkable connection between the sum-of-divisors function (A000203) and the generalized pentagonal numbers (A001318) see A238442.

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,(3*n^2+2*n+(n mod 2)*(2*n+1)) div 8): n in [1..70]]; // Vincenzo Librandi, Dec 21 2015
  • Mathematica
    DivisorSigma[1, Select[Accumulate[Range[200]]/3, IntegerQ]] (* G. C. Greubel, Jun 06 2017 *)
  • PARI
    a(n) = sigma((3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8); \\ Michel Marcus, Dec 21 2015
    
  • Scheme
    (define (A262613 n) (A000203 (A001318 n))) ;; Scheme-program for A000203 given in that entry.
    ;; This uses memoization-macro definec:
    (definec (A001318 n) (if (zero? n) 0 (+ (if (even? n) (/ n 2) n) (A001318 (- n 1)))))
    ;; Antti Karttunen, Dec 20 2015
    

Formula

a(n) = A000203(A001318(n)).
Sum_{k=1..n} a(k) ~ (9/40) * n^3. - Amiram Eldar, Dec 14 2024

A238288 Triangle read by rows T(n,k), n>=1, k>=1, in which column k lists the positive integers interleaved with k-1 zeros, but starting from 2*k at row k^2.

Original entry on oeis.org

2, 3, 4, 5, 4, 6, 0, 7, 5, 8, 0, 9, 6, 10, 0, 6, 11, 7, 0, 12, 0, 0, 13, 8, 7, 14, 0, 0, 15, 9, 0, 16, 0, 8, 17, 10, 0, 8, 18, 0, 0, 0, 19, 11, 9, 0, 20, 0, 0, 0, 21, 12, 0, 9, 22, 0, 10, 0, 23, 13, 0, 0, 24, 0, 0, 0, 25, 14, 11, 10, 26, 0, 0, 0, 10
Offset: 1

Views

Author

Omar E. Pol, Mar 02 2014

Keywords

Comments

Row sums give A060866.
If n is a square then the row sum gives n^(1/2) + A000203(n) otherwise the row sum gives A000203(n).
Row n has length A000196(n).
Row n has only one positive term iff n is a noncomposite number (A008578).
If the first element of every column is divided by 2 then we have the triangle A237273 whose row sums give A000203.
It appears that there are only eight rows that do not contain zeros. The indices of these rows are in A018253.

Examples

			Triangle begins:
2;
3;
4;
5,   4;
6,   0;
7,   5;
8,   0;
9,   6;
10,  0,  6;
11,  7,  0;
12,  0,  0;
13,  8,  7;
14,  0,  0;
15,  9,  0;
16,  0,  8;
17, 10,  0,  8;
18,  0,  0,  0;
19, 11,  9,  0;
20,  0,  0,  0;
21, 12,  0,  9;
22,  0, 10,  0;
23, 13,  0,  0;
24,  0,  0,  0;
25, 14, 11, 10;
26,  0,  0,  0,  10;
27, 15,  0,  0,   0;
28,  0, 12,  0,   0;
29, 16,  0, 11,   0;
30,  0,  0,  0,   0;
31, 17, 13,  0,  11;
...
		

Crossrefs

Showing 1-10 of 10 results.