cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238451 Triangle read by rows: T(n,k) is the number of k’s in all partitions of n into an even number of distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 0, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Mircea Merca, Feb 26 2014

Keywords

Examples

			n/k | 1 2 3 4 5 6 7 8 9 10
   1: 0
   2: 0 0
   3: 1 1 0
   4: 1 0 1 0
   5: 1 1 1 1 0
   6: 1 1 0 1 1 0
   7: 1 1 1 1 1 1 0
   8: 1 1 1 0 1 1 1 0
   9: 1 1 1 1 1 1 1 1 0
  10: 2 2 2 2 0 1 1 1 1 0
		

Crossrefs

Columns k=1..6 are A238215, A238217, A238218, A238219, A238220, A238221.
Row sums are A238132.

Programs

  • PARI
    T(n,k) = {my(m=n-k); if(m>0, polcoef(prod(j=1, m, 1+x^j + O(x*x^m))/(1+x^k) - prod(j=1, m, 1-x^j + O(x*x^m))/(1-x^k), m)/2, 0)} \\ Andrew Howroyd, Apr 29 2020

Formula

T(n,k) = Sum_{j=1..round(n/(2*k))} A067659(n-(2*j-1)*k) - Sum_{j=1..floor(n/(2*k))} A067661(n-2*j*k).
G.f. of column k: (1/2)*(q^k/(1+q^k))*(-q;q){inf} - (1/2)*(q^k/(1-q^k))*(q;q){inf}.
T(n,k) = A015716(n,k) - A238450(n,k). - Andrew Howroyd, Apr 29 2020