A238455 Difference between 4^n and the nearest triangular number.
0, 1, 1, -2, 3, -11, 1, -87, -167, -306, -500, -552, 688, -3041, -579, 20854, 37075, 55618, 37108, -222296, -147729, 891994, 602155, -3523022, -2228805, 14811346, 11792251, -47737262, -1136517, 375078994, 741065851, 1445763154, 2746052116, 4910207464, 7492827856
Offset: 0
Keywords
Examples
a(0) = 1 - 1 = 0. a(1) = 4 - 3 = 1. a(2) = 16 - 15 = 1. a(3) = 64 - 66 = -2. a(4) = 256 - 253 = 3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
db4n[n_]:=Module[{c=4^n,tr,t1,t2,d1,d2},tr=Floor[(Sqrt[8c+1]-1)/2];t1= (tr (tr+1))/ 2;t2=((tr+1)(tr+2))/2;d1=c-t1;d2=c-t2;If[d1
Harvey P. Dale, Jul 02 2019 *) -
PARI
a(n) = my(p=4^n, t=sqrtint(2*p)); (-t^2 - t + 2*p)/2; \\ Michel Marcus, Jun 16 2022
-
Python
def isqrt(a): sr = 1 << (int.bit_length(int(a)) >> 1) while a < sr*sr: sr>>=1 b = sr>>1 while b: s = sr + b if a >= s*s: sr = s b>>=1 return sr for n in range(77): nn = 4**n s = isqrt(2*nn) if s*(s+1)//2 > nn: s-=1 d1 = nn - s*(s+1)//2 d2 = (s+1)*(s+2)//2 - nn if d2 < d1: d1 = -d2 print(str(d1), end=',')
Formula
a(n) = (1/2)*(-t^2 - t + 2*4^n), where t = floor(sqrt(2*4^n)) after formula in A053616. - Michel Marcus, Jun 16 2022