A238462 2-adic valuation of A052129.
0, 0, 1, 2, 6, 12, 25, 50, 103, 206, 413, 826, 1654, 3308, 6617, 13234, 26472, 52944, 105889, 211778, 423558, 847116, 1694233, 3388466, 6776935, 13553870, 27107741, 54215482, 108430966, 216861932, 433723865, 867447730
Offset: 0
Keywords
Links
- Kenny Lau, Table of n, a(n) for n = 0..3323
Programs
-
Maple
with(padic): seq(add(2^(n-i)*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Sep 03 2019
-
Mathematica
Map[IntegerExponent[#, 2] &, Nest[Append[#, Length[#]*#[[-1]]^2] &, {1}, 31]] (* or, per first formula, more efficiently, *) Array[Sum[2^(# - i)*IntegerExponent[i, 2], {i, #}] &, 32, 0] (* Michael De Vlieger, Sep 29 2019 *)
-
PARI
A052129(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k)); a(n) = valuation(A052129(n),2);
-
PARI
a(n) = fromdigits(vector(n,i,valuation(i,2)), 2); \\ Kevin Ryde, Oct 08 2021
-
Python
n=4000; val=[0]*(n+1); exp=2 while exp <= n: for j in range(exp,n+1,exp): val[j] += 1 exp *= 2 res = 0; i = 0 while len(str(res)) <= 1000: print(i,res); i += 1; res = res * 2 + val[i] # Kenny Lau, Jun 09 2018
Formula
From Ridouane Oudra, Sep 03 2019: (Start)
a(n) = Sum_{i=1..n} 2^(n-i)*v_2(i), where v_2(i) = A007814(i).
More generally, the p-adic valuation of A052129 for any prime p is given by
v_p(A052129(n)) = Sum_{i=1..n} 2^(n-i)*v_p(i), where v_p(i) is the exponent of the highest power of p dividing i. (End)
Extensions
Incorrect comment removed by Michel Marcus, Oct 06 2019