cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238462 2-adic valuation of A052129.

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 25, 50, 103, 206, 413, 826, 1654, 3308, 6617, 13234, 26472, 52944, 105889, 211778, 423558, 847116, 1694233, 3388466, 6776935, 13553870, 27107741, 54215482, 108430966, 216861932, 433723865, 867447730
Offset: 0

Views

Author

Joerg Arndt, Feb 27 2014

Keywords

Programs

  • Maple
    with(padic): seq(add(2^(n-i)*ordp(i, 2), i=1..n), n=0..60); # Ridouane Oudra, Sep 03 2019
  • Mathematica
    Map[IntegerExponent[#, 2] &, Nest[Append[#, Length[#]*#[[-1]]^2] &, {1}, 31]] (* or, per first formula, more efficiently, *)
    Array[Sum[2^(# - i)*IntegerExponent[i, 2], {i, #}] &, 32, 0] (* Michael De Vlieger, Sep 29 2019 *)
  • PARI
    A052129(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k));
    a(n) = valuation(A052129(n),2);
    
  • PARI
    a(n) = fromdigits(vector(n,i,valuation(i,2)), 2); \\ Kevin Ryde, Oct 08 2021
    
  • Python
    n=4000; val=[0]*(n+1); exp=2
    while exp <= n:
        for j in range(exp,n+1,exp): val[j] += 1
        exp *= 2
    res = 0; i = 0
    while len(str(res)) <= 1000: print(i,res); i += 1; res = res * 2 + val[i]
    # Kenny Lau, Jun 09 2018

Formula

From Ridouane Oudra, Sep 03 2019: (Start)
a(n) = Sum_{i=1..n} 2^(n-i)*v_2(i), where v_2(i) = A007814(i).
More generally, the p-adic valuation of A052129 for any prime p is given by
v_p(A052129(n)) = Sum_{i=1..n} 2^(n-i)*v_p(i), where v_p(i) is the exponent of the highest power of p dividing i. (End)

Extensions

Incorrect comment removed by Michel Marcus, Oct 06 2019