cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052129 a(0) = 1; thereafter a(n) = n*a(n-1)^2.

Original entry on oeis.org

1, 1, 2, 12, 576, 1658880, 16511297126400, 1908360529573854283038720000, 29134719286683212541013468732221146917416153907200000000
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 12 2002

Keywords

Comments

Somos's quadratic recurrence sequence.
Iff n is prime (n>2), the n-adic valuation of a(2n) is 3*A001045(n) (three times the values at the prime indices of Jacobsthal numbers), which is 2^n+1. For example: the 11-adic valuation at a(22) = 2049 = 3*A001045(11)= 683. 3*683 = 2^11+1 = 2049. True because: When n is prime, n-adic valuation is 1 at A052129(n), then doubles as n-increases to 2n, at which point 1 is added; thus A052129(2n) = 2^n+1. Since 3*A001045(n) = 2^n+1, n-adic valuation of A052129(2n) = 3*A001045(n) when n is prime. - Bob Selcoe, Mar 06 2014
Unreduced denominators of: f(1) = 1, f(n) = f(n-1) + f(n-1)/(n-1). - Daniel Suteu, Jul 29 2016

Examples

			a(3) = 3*a(2)^2 = 3*(2*a(1)^2)^2 = 3*(2*(1*a(0)^2)^2)^2 = 3*(2*(1*1^2)^2)^2 = 3*(2*1)^2 = 3*4 = 12.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 576*x^4 + 1658880*x^5 + 16511297126400*x^6 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==n a[n-1]^2},a,{n,10}]]  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Product[ (n - k)^2^k, {k, 0, n - 1}]]; (* Michael Somos, May 24 2013 *)
    a[n_] := Product[ k^(2^(n - k)), {k,1,n}] (* Jonathan Sondow, Mar 17 2014 *)
    NestList[{#[[1]]+1,#[[1]]*#[[2]]^2}&,{1,1},10][[All,2]] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k))}; /* Michael Somos, May 24 2013 */

Formula

a(n) ~ s^(2^n) / (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where s = 1.661687949633... (see A112302) and A116603. - Michael Somos, Apr 02 2006
a(n) = n * A030450(n - 1) if n>0. - Michael Somos, Oct 22 2006
a(n) = (a(n-1) + a(n-2)^2) * (a(n-1) / a(n-2))^2. - Michael Somos, Mar 20 2012
a(n) = product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 17 2014
A088679(n+1)/a(n) = n+1. -Daniel Suteu, Jul 29 2016

A238496 Number of prime factors in A052129(n).

Original entry on oeis.org

0, 0, 1, 3, 8, 17, 36, 73, 149, 300, 602, 1205, 2413, 4827, 9656, 19314, 38632, 77265, 154533, 309067, 618137, 1236276, 2472554, 4945109, 9890222, 19780446, 39560894, 79121791, 158243585, 316487171, 632974345, 1265948691, 2531897387
Offset: 0

Views

Author

Bob Selcoe, Feb 27 2014

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(2^(n-i)*bigomega(i), i=1..n), n=0..40); # Ridouane Oudra, Nov 11 2019
  • PARI
    a(n) = if (n==0, 0, 2*a(n-1) + bigomega(n)); \\ Michel Marcus, May 25 2014

Formula

a(n) = 2*a(n-1) + A001222(n) for n>=1; a(0) = 0.
a(n) = Sum_{i=1..n} 2^(n-i)*A001222(i). - Ridouane Oudra, Nov 11 2019

A239148 Expansion of triangle T(n,k) of p-adic valuations of A052129(n) (Somos' quadratic recurrence sequence).

Original entry on oeis.org

0, 0, 1, 2, 1, 6, 2, 12, 4, 1, 25, 9, 2, 50, 18, 4, 1, 103, 36, 8, 2, 206, 74, 16, 4, 413, 148, 33, 8, 826, 296, 66, 16, 1, 1654, 593, 132, 2, 3308, 1186, 264, 64, 4, 1, 6617, 2372, 528, 129, 8, 2, 13234, 4745, 1057, 258, 16, 4, 26472, 9490, 211, 516, 32, 8, 52944, 18980, 4228, 1032, 64, 16, 1, 105889
Offset: 0

Views

Author

Bob Selcoe, Mar 11 2014

Keywords

Comments

Sum of triangle rows => A238496(n).
Only repeated values are powers of 2; all others are non-repeating.
When n=2p (p>2): T(n,k)=2^p+1.

Examples

			2    3    5    7    11   13...  (p)
0
0
1
2    1
6    2
12   4    1
25   9    2
50   18   4    1
103  36   8    2
206  74   16   4
413  148  33   8
826  296  66   16   1
1654 593  132  32   2
3308 1186 264  64   4    1
6617 2372 528  129  8    2
T(11,2)=66 because the (k+1)-th (3rd) prime is 5, and the 5-adic valuation of A052129(11)=66,
T(14,3)=129=2^7+1; n=2p because the (k+1)-th (4th) prime is 7.
		

Crossrefs

Cf. A052129, A238496, A238462 (2-adic valuation of A052129).
Cf. A001045 (Jacobsthal numbers - see A052129 for relationship with this sequence).

Programs

  • PARI
    T(n,k)=my(p=prime(k+1),s); forstep(i=n%p, n-1, p, s+=valuation(n-i, p)<Charles R Greathouse IV, Mar 12 2014

Formula

T(n,k) = p-adic valuations of n*A052129(n-1)^2 (n>1; p=>(k+1)-th prime).
When k is constant and P' means "p-adic valuations of": P'a(n) = 2*P'a(n-1) + P'(n).
Showing 1-3 of 3 results.