A238529 a(0) = a(1) = 0, and for n > 1, a(n) = number of iterations of A238525 (n modulo sopfr(n)) needed to reach either 0 or 1. Here sopfr(n) is the sum of the prime factors of n, with multiplicity, A001414.
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 2, 1, 2, 3, 3, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 1, 3, 1, 3, 1
Offset: 0
Keywords
Examples
a(2) = 1, because 2 mod sopfr(2) = 2 mod 2 = 0, and further recursion (0 mod sopfr(0)) is undefined. a(8) = 2, because 8 mod sopfr(8) = 8 mod 6 = 2, and 2 mod sopfr(2) is defined as above, giving 8 a recursive depth of 2.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16384
Programs
-
Mathematica
Array[-1 + Length@ NestWhileList[Mod[#, Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #]] &, #, # > 1 &] &, 105, 0] (* Michael De Vlieger, Oct 20 2017 *)
-
PARI
A001414(n) = { my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); }; A238525(n) = (n%A001414(n)); A238529(n) = if(n<=1,0,1+A238529(A238525(n))); \\ Antti Karttunen, Oct 20 2017
-
Sage
def a(n): d = 0 while n>1: n = n % sum([f[0]*f[1] for f in factor(n)]) d = d+1 return d # Ralf Stephan, Mar 09 2014
Formula
a(0) = a(1) = 0; for n > 1, a(n) = 1 + a(A238525(n)). - Antti Karttunen, Oct 20 2017
Extensions
More terms from Ralf Stephan, Mar 09 2014
Terms a(0) = a(1) = 0 prepended and name changed by Antti Karttunen, Oct 20 2017
Comments