A238531 Expansion of (1 - x + x^2)^2 / (1 - x)^3 in powers of x.
1, 1, 3, 5, 8, 12, 17, 23, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 233, 255, 278, 302, 327, 353, 380, 408, 437, 467, 498, 530, 563, 597, 632, 668, 705, 743, 782, 822, 863, 905, 948, 992, 1037, 1083, 1130, 1178, 1227, 1277, 1328, 1380
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 5*x^3 + 8*x^4 + 12*x^5 + 17*x^6 + 23*x^7 + 30*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A133263.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+x^2)^2/(1-x)^3)); // G. C. Greubel, Aug 07 2018 -
Mathematica
a[ n_] := (n^2 - n) / 2 + If[ n == 0 || n == 1, 1, 2]; CoefficientList[Series[(1-x+x^2)^2/(1-x)^3, {x, 0, 50}], x] (* G. C. Greubel, Aug 07 2018 *)
-
PARI
{a(n) = (n^2 - n) / 2 + 2 - (n==0) - (n==1)};
-
PARI
{a(n) = if( n<0, n = 1-n); polcoeff( (1 - x + x^2)^2 / (1 - x)^3 + x * O(x^n), n)};
Formula
Euler transform of length 6 sequence [1, 2, 2, 0, 0, -2].
Binomial transform of [1, 0, 2, -2, 3, -4, 5, -6, ...].
a(n) = p(-1) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 0, 1, ..., n.
G.f.: (1 - x + x^2)^2 / (1 - x)^3.
a(n) = a(1 - n) for all n in Z.
a(n + 1) = A133263(n) if n>=0. a(n) = (n^2 - n) / 2 + 2 unless n=0 or n=1.
(1 + x^2 + x^3 + x^4 + ...)*(1 + x + 2x^2 + 3x^3 + 4x^4 + ...) = (1 + x + 3x^2 + 5x^3 + 8x^4 + 12x^5 + ...). - Gary W. Adamson, Jul 27 2010
Comments