A238536 A fourth-order linear divisibility sequence related to the Fibonacci numbers: a(n) = (1/2)*Fibonacci(3*n)*Lucas(n).
1, 12, 68, 504, 3355, 23256, 158717, 1089648, 7463884, 51170460, 350695511, 2403786672, 16475579353, 112925875764, 774003961940, 5305106018016, 36361727272627, 249227013404808, 1708227291909269, 11708364225400920, 80250321774226396, 550043889533755332, 3770056901455017263
Offset: 1
References
- S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1185
- Peter Bala, A family of linear divisibility sequences of order four
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- Wikipedia, Divisibility sequence
- Wikipedia, Lucas sequence
- Index entries for linear recurrences with constant coefficients, signature (4,19,4,-1).
Programs
-
Magma
I:=[12, 68, 504, 3355]; [1] cat [n le 4 select I[n] else 4*Self(n-1) + 19*Self(n-2) + 4*Self(n-3) - Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 25 2017
-
Maple
with(combinat): lucas:= n->fibonacci(n+1)+ fibonacci(n-1): seq(1/2*lucas(n)*fibonacci(3*n), n = 1..24);
-
Mathematica
Table[Fibonacci(3*n)*Lucas(n)/2, {n,1,30}] (* or *) Join[{1}, LinearRecurrence[{4,19,4,-1}, {12, 68, 504, 3355}, 30]] (* G. C. Greubel, Dec 25 2017 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,4,19,4]^(n-1)*[1;12;68;504])[1,1] \\ Charles R Greathouse IV, Oct 07 2016
Formula
a(n) = (1/2)*Fibonacci(2*n)*Fibonacci(3*n)/Fibonacci(n).
a(n) = (1/(2*sqrt(5)))*( ((7 + 3*sqrt(5))/2)^n - ((7 - 3*sqrt(5))/2)^n + (-1)^n*((3 + sqrt(5))/2)^n - (-1)^n*((3 - sqrt(5))/2)^n ).
The sequence can be extended to negative indices by setting a(-n) = -a(n).
O.g.f. x*(1 + 8*x + x^2)/( (1 + 3*x + x^2)*(1 - 7*x + x^2) ).
Recurrence equation: a(n) = 4*a(n-1) + 19*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = (1/2) * (Fibonacci(4*n) + (-1)^n*Fibonacci(2*n)). - Ralf Stephan, Mar 01 2014
Comments