A238537 A fourth-order linear divisibility sequence related to the Pell numbers.
1, 42, 1379, 47124, 1599205, 54335358, 1845747527, 62701403688, 2130000094537, 72357312787410, 2458018570699691, 83500274463891516, 2836551311028252973, 96359244313163973414, 3273377755262716618895, 111198484435049515150416, 3777475093033912744231057
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..654
- Peter Bala, A family of linear divisibility sequences of order four
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- Wikipedia, Divisibility sequence
- Wikipedia, Pell number
- Index entries for linear recurrences with constant coefficients, signature (28,202,28,-1)
Programs
-
Mathematica
LinearRecurrence[{28, 202, 28, -1}, {1, 42, 1379, 47124}, 17] (* Jean-François Alcover, Nov 02 2019 *)
Formula
a(n) = (1/(20*sqrt(2)))*((1 + sqrt(2))^(3*n) - (1 - sqrt(2))^(3*n))*( (1 + sqrt(2))^n + (1 - sqrt(2))^n ).
O.g.f.: x*(1 + 14*x + x^2)/( (1 + 6*x + x^2)*(1 - 34*x + x^2) ).
Recurrence equation: a(n) = 28*a(n-1) + 202*a(n-2) + 28*a(n-3) - a(n-4).
a(n) = (1/10) * (Pell(4n) + (-1)^n*Pell(2n)), with Pell(n) = A000129(n). - Ralf Stephan, Mar 01 2014
Comments