A238538 A fourth-order linear divisibility sequence: a(n) = (2^n + 1)*(2^(3*n) - 1)/ ( (2 + 1)*(2^3 - 1) ).
1, 15, 219, 3315, 51491, 811395, 12882499, 205321155, 3278747331, 52408827075, 838132189379, 13406842675395, 214483303960771, 3431523432591555, 54902699475185859, 878429788032676035, 14054769379960303811, 224875452250864496835, 3598000373385828511939
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..831
- Peter Bala, A family of linear divisibility sequences of order four
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- Wikipedia, Divisibility sequence
- Wikipedia, Lucas Sequence
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
- Index entries for linear recurrences with constant coefficients, signature (27,-202,432,-256).
Programs
-
Maple
seq(1/21*(2^n + 1)*(2^(3*n) - 1), n = 1..20);
-
Mathematica
LinearRecurrence[{27,-202,432,-256},{1,15,219,3315},20] (* Harvey P. Dale, Jul 04 2019 *)
Comments