A238590 Number of partitions p of n such that 3*min(p) is a part of p.
0, 0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 32, 46, 61, 86, 110, 149, 192, 257, 326, 425, 538, 694, 871, 1107, 1381, 1740, 2154, 2689, 3313, 4103, 5024, 6176, 7529, 9201, 11157, 13554, 16365, 19784, 23782, 28610, 34260, 41039, 48958, 58405, 69431, 82525, 97775
Offset: 1
Examples
a(7) = 3 counts these partitions: 331, 3211, 31111.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i))) end: a:= n-> add(b(n-4*i, i), i=1..n/4): seq(a(n), n=1..60); # Alois P. Heinz, Mar 03 2014
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Min[p]]], {n, 50}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]]; a[n_] := Sum[b[n-4i, i], {i, 1, n/4}]; Array[a, 60] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
-
PARI
my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023
Formula
G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 73*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (2^(5/2) * n^(3/2)). (End)